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dimensions and in problems with low stochastic regularity. Specifically, we employ the
multi-element probabilistic collocation method MEPCM [1] and so we refer to the new
method as MEPCM-A. We investigate the dependence of the convergence of MEPCM-A
on two decomposition parameters, the polynomial order u and the effective dimension
] . v, with v < N, and N the nominal dimension. Numerical tests for multi-dimensional inte-
Domain decomposition . . .. .
Stochastic partial differential equations gration and for stochastic elliptic problems sugges.t that v > u for monqtomc convergence
Sparse grids of the method. We also employ MEPCM-A to obtain error bars for the piezometric head at
the Hanford nuclear waste site under stochastic hydraulic conductivity conditions. Finally,
we compare the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and
we find MEPCM-A to be more efficient for up to 600 dimensions for a specific multi-dimen-
sional integration problem involving a discontinuous function.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Partial differential equations with uncertain or stochastic parameters arise in many problems from engineering, biology,
and various other fields. In many cases, using standard Monte Carlo techniques to calculate moment statistics of the solu-
tions to these problems is prohibitively computationally expensive. In this paper we concentrate on a class of methods,
called stochastic spectral methods, which are designed to efficiently calculate moments of solutions to systems with paramet-
ric uncertainty (see, e.g., [2-15] and references therein). These methods can provide considerable speed-up in computational
time when compared to Monte Carlo (MC) simulation for many problems of low to moderate random dimension. There are
still, however, several important computational limitations associated with these techniques. Since the random inputs in
many problems are stochastic processes approximated with truncated Karhunen-Loéve expansions, the dimensionality of
these inputs is dependent on the correlation length of these processes. For input processes with relatively low correlation
length, the number of dimensions required for accurate representation can be extremely large. However, Karhunen-Loéve
inputs with moderately high dimensionality (e.g., greater than 10 dimensions) pose major computational challenges for sto-
chastic spectral methods, which must utilize approximation techniques in the high-dimensional stochastic space. Low sto-
chastic regularity of the solution poses another significant computational challenge. In this case, accurately capturing the
solution requires a prohibitively high-order representation in the random space.

To deal with low stochastic regularity of solutions, Galerkin-based methods utilizing multi-resolution wavelet expansions
were developed in [16,17]. Domain decomposition in the random space for the stochastic Galerkin method was proposed in
[2]. Then, a method using adaptive h-refinement was introduced in [18] to deal with arbitrary probability distributions with
the numerical construction of generalized polynomial chaos bases on the fly. This approach, called the Multi-Element

* Corresponding author. Tel.: +1 401 863 1217; fax: +1 401 863 3369.
E-mail address: gk@dam.brown.edu (G.E. Karniadakis).

0021-9991/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2009.10.043


http://dx.doi.org/10.1016/j.jcp.2009.10.043
mailto:gk@dam.brown.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

J. Foo, G.E. Karniadakis /Journal of Computational Physics 229 (2010) 1536-1557 1537

Generalized Polynomial Chaos (ME-gPC) method was found to effectively deal with problems exhibiting low regularity in
parametric space as well as for long-time integration [18]. An analogous collocation-based method called the Multi-Element
Probabilistic Collocation Method (ME-PCM) was developed and analyzed in [1].

Collocation-based stochastic spectral methods were first introduced in [13,19]. Quadrature formulae were used by Le
Maitre and colleagues in [20] and also considered in [4]. The use of Lagrange interpolants in stochastic collocation was ex-
plored in [6,14], where convergence analysis for elliptic equations was performed. Since moment estimation in stochastic
collocation essentially translates to numerical integration, this method benefits directly from advances in the field of
high-dimensional integration and interpolation. In 2003, Matthies and Keese proposed the use of sparse grid quadrature
for stochastic collocation [21]. Classical sparse grids, introduced by Smolyak [22] in 1963, are constructed from tensor prod-
ucts of one-dimensional quadrature formulas. Of all possible combinations of one-dimensional formulas, only the ones
whose corresponding indices fall within the unit simplex are considered in the Smolyak construction. Sparse grids utilize
the smoothness of the integrand to weaken the “curse of dimensionality” for certain classes of functions (e.g., functions with
bounded mixed derivatives) in low to moderate dimensions. The errors and efficiency of sparse grid integration and inter-
polation have been investigated extensively in [23-26]. In particular, in [23-25] the errors of integrating or interpolating
functions with Sobolev regularity are analyzed for Smolyak constructions based on one-dimensional nested Clenshaw-Curtis
rules. In [23] the degree of exactness of Smolyak quadrature using Clenshaw-Curtis and Gaussian one-dimensional rules is
investigated. In [26] the integration error of sparse grids based on one-dimensional Kronrod-Patterson rules is bounded for
analytic integrands. Some of these results have been used in recent works in analyzing the error bounds of sparse grid sto-
chastic collocation.

In 2005, Xiu and Hesthaven [4] numerically demonstrated the efficiency of Clenshaw-Curtis-based sparse grid stochastic
collocation in comparison to other methods on an elliptic problem with low to moderate (<50) dimensions. This method was
extended to include adaptive refinement in stochastic dimensions and applied to stochastic natural convection problems in
[15]. The method was also analyzed by Nobile et al. [27] in 2006 for a linear elliptic PDE with random input. There, the sparse
grid interpolation error bound developed in [24] was used to bound the stochastic discretization error and strong error esti-
mates for the fully discrete solution were shown. Numerical experiments performed on the stochastic elliptic problem with
1-11 dimensions demonstrated the efficiency of this method in comparison to Monte Carlo and tensor product stochastic
collocation.

Despite the considerable improvements in efficiency of the sparse grid collocation method over Monte Carlo and tensor
product methods, the complexity estimate of sparse grids still depends heavily on the dimension and on the regularity of the
integrand [25]. Thus, if the number of dimensions grows beyond moderate levels the convergence rate suffers increasingly.
Similarly, solutions with low stochastic regularity will further hinder the convergence of the method. To push the dimen-
sionality limitation higher, some variations of the sparse grid methods have been introduced.

One particularly interesting variation is the ‘dimension-adaptive tensor product quadrature’ method introduced by Gerst-
ner and Griebel [28] in 2003. There it was recognized that in some applications the different dimensions of the integration
problem are of varying importance. This is often the case for random inputs from Karhunen-Loéve decompositions of ran-
dom processes, or parametric sensitivity analysis problems. In [28] the authors utilized a generalized sparse grid formulation
introduced in [29-31], where the space of possible combinations of one-dimensional formulas (index sets) was increased to
include indices outside the unit simplex, which weights all dimensions equally. These generalized index sets can be chosen
to provide greater resolution in selected dimensions only, according to chosen weights. However, it is not always known a
priori which dimensions are of greater importance than others. The authors also developed a dimension-adaptive method to
assess the importance of each dimension by considering the selection of the index set as a binary knapsack optimization
problem, and they demonstrated its effectiveness on integration problems with up to 256 dimensions.

The concept of dimensionally anisotropic sparse grids is certainly promising for stochastic collocation methods. How-
ever, the optimization problem used in the adaptive method of [28] involves calculating the integral for sparse grids re-
solved at one higher level in each dimension in order to assess the relative importance. This can be costly for stochastic
collocation problems, where the calculation at each sample point involves the solution of a deterministic PDE. Thus, other
methods of assessing the relative importance of different dimensions must be developed for use in conjunction with aniso-
tropic sparse grids. The general sparse grid formulation described above is used by Nobile et al. [32] for stochastic collo-
cation of elliptic PDEs with random input data. There, the known regularity of the solution in each random dimension is
used to provide the weighting of dimensions in the anisotropic grid, and estimates of the interpolation error are provided.
However, we note that as stated in [28] these methods are not capable of accurately resolving solutions with large
discontinuities.

For general problems where information regarding the dimension-wise stochastic regularity of the solution is unavail-
able, a variety of algorithms have been developed in numerical complexity theory to aid in designating important dimen-
sions. This is particularly important for reducing computational effort in problems with high nominal random dimension.
A 2005 report by Griebel [33] reviews a number of algorithms, beginning with methods stemming from Kolmogorov’s super-
position theorem [34], where it is proven that continuous functions of several variables can be represented by superpositions
of continuous functions of fewer variables. Of particular importance to stochastic collocation are analogous ideas found in
statistics for regression problems and density estimation. In the present work we focus specifically on methods derived from
ANOVA (Analysis-of-Variance) decompositions. This is motivated by the idea that for many physical systems, only relatively
low-order correlations between dimensions will significantly impact the solution. Other dimension-reduction techniques
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for stochastic spectral methods have been proposed, such as an a posteriori Karhunen-Loéve decomposition of the solution at
intermediate time points, but these have ideas have not yet been fully investigated.

The ANOVA (Analysis-of-Variance) decomposition, also described in [33], was introduced by Fisher in 1921 (see e.g., [35])
and utilized for studying U-statistics by Hoeffding in 1948 [36]. ANOVA has also previously been used in the context of sto-
chastic PDEs and uncertainty quantification in [37]. This approach involves splitting a multi-dimensional function into its
contributions from different groups of subdimensions. This type of dimension-wise decomposition can effectively break
the curse of dimensionality in certain approximation problems. The underlying idea involves the splitting of a one-dimen-
sional function approximation space into the constant subspace and the remainder space. The associated splitting for multi-
dimensional cases is formed via a product construction. In practice, one essentially truncates the ANOVA-type decomposi-
tion at a certain dimension d, thereby dealing with a series of low-dimensional (<d) approximation problems in lieu of one
high-dimensional problem. This type of truncation can make high-dimensional approximation tractable for functions with
high nominal dimension N but only low-order correlations amongst input variables (i.e., low effective dimension d). How-
ever, it is important to note that with these types of decompositions, nothing is gained with respect to the curse of dimen-
sionality when the effective dimension is close or equal to the nominal dimension of the problem. In other words, if the
highest order terms in the ANOVA decomposition make large contributions, then the computational complexity of these
methods is not smaller than that of the original high-dimensional problem. This is not surprising as the same situation is
well known also in quasi Monte Carlo (QMC) simulation studies [38,39]; QMC is fast only if the effective dimension is much
smaller than the nominal dimension, i.e., d < N.

In [40], Rabitz and colleagues introduced two High Dimensional Model Reduction (HDMR) techniques to capture input-
output relationships of physical systems with many input variables. These techniques (called ANOVA-HDMR and cut-
HDMR) are based on ANOVA-type decompositions. ANOVA-HDMR utilizes the original ANOVA decomposition (which is also
used statistics to analyze the variance of a random multivariate quantity). In this approach, multi-dimensional integrals
must be evaluated to determine the component functions. The orthogonality condition imposed in this formulation ensures
that the sum of variances of the component functions equals the full variance. Thus, it can be used to provide information
about the importance of different dimensions and of the correlations and interactions between groups of dimensions. In
2001, Sobol used this formulation to define global sensitivity indices [41], which reflect the relative variance contributions
of different ANOVA terms, thus giving insight into the influence of individual parameters or subgroups of parameters and
their interactions on the output. This same approach is explored by Griebel for use in numerical treatments of high-dimen-
sional problems in [33]. However, a main drawback to this type of formulation is the computational cost associated with
evaluating the multi-dimensional integrals necessary for determining the component functions.

Rabitz et al. [40] also introduced the cut-HDMR technique, in which the component functions are defined via hyper-
plane cuts through an anchor point in the center of the domain. This technique was shown to be computationally more
efficient than the ANOVA-HDMR approach. However, in this formulation the sum of variances of the component func-
tions is no longer equal the full variance. In 2006, Schwab and Todor [11] utilized the same approach to introduce a
sparse polynomial chaos approximation for elliptic problems with stochastic coefficients, as an alternative to tensor
product polynomial approximation bases. A stochastic collocation method based on this sparse basis was proposed
and analyzed by Bieri and Schwab in 2009 [42], where the truncation dimension of the ANOVA-type series is chosen
based on the size of the eigenvalues in the Karhunen-Loéve random input expansion. They showed that for the stochas-
tic elliptic model problem, random inputs of up to 80 dimensions were successfully addressed numerically with very low
computational cost.

The Multi-Element Probabilistic Collocation Method (MEPCM) was shown in [1] to efficiently treat problems with discon-
tinuous dependence on parameters and long time-integration. However, one main limitation of the MEPCM is the fact that
elemental decomposition of high-dimensional random spaces is often prohibitively costly. Therefore, in this work we com-
bine a cut-HDMR type ANOVA approach (analogous to the sparse chaos formulation of Schwab and colleagues) with the
MEPCM and investigate its performance on high-dimensional elliptic problems; we will refer to this method MEPCM-A.
The use of the ANOVA-type decomposition reduces high-dimensional integration problems (e.g., stochastic collocation) to
a series of low-dimensional problems. The MEPCM can then be applied to each of the low-dimensional problems where do-
main decomposition is not computationally prohibitive.

This paper is organized as follows. In Section 2 we introduce the general model problem and assumptions on the random
inputs, and in Section 3 we describe the ANOVA decomposition. In Section 4 the formulation of the MEPCM-A is given, and in
Sections 5 and 6 we perform a variety of simple numerical studies to analyze the efficiency and accuracy of this method in
comparison to other existing methods suitable for high-dimensional problems. To investigate convergence properties, we
use moderate dimensional test integrands and a stochastic elliptic problem. We also investigate the convergence of the AN-
OVA-based single-element collocation method (which we refer to as PCM-A) and its dependence on decomposition param-
eters. Next, we investigate the convergence of the MEPCM-A and compare the efficiency of MEPCM-A with and without a
priori adapted meshes to sparse grid PCM as well as the PCM-A. For both PCM-A and MEPCM-A methods, we observe that
the convergence is non-monotonic with respect to the computational costs, so the decomposition parameters must be cho-
sen judiciously. We test the MEPCM-A method for integration of discontinuous functions in 100-500 dimensions using the
GENZ package of testing functions for high-dimensional integration. Lastly, in Section 7 we apply the MEPCM-A to aid in
modeling subsurface contaminant transport through heterogeneous media at the US Department of Energy’s Hanford Site
in southeastern Washington state. We conclude that for problems with prohibitively high nominal dimension and possibly
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low stochastic regularity, the MEPCM-A can be a useful tool in solving otherwise computationally intractable problems, pro-
vided the solution has relatively low effective dimension or a decay in its interaction weights.

2. Model problem and assumptions

Let (2, A, P) be a complete probability space, where  is the space of events, A c 22 is the g-algebra of sets in €, and P is
the probability measure. Also, define D to be a subset of RY(d € {1,2,3}) with boundary aD. Let £ and R be operators on D
and aD, respectively, where £ may depend upon w € Q. In this work we consider the following problem: find u: D x @ — R
such that P-almost everywhere (a.e.) in 2 the following equation holds:

{ﬁ(x,w; u)=f(x,w), xe€D,

R(x;u) = g(x), x e aD. (1)

We assume that the boundary has sufficient regularity and that f and g are imposed so that the problem is well-posed P-a.e.
We also assume that for P-a.e. @ € @, the solution u(-, ») takes values in a Banach space, W(D), of functions over the physical
domain taking values in R. We assume additionally that the solution u is in L?(2; W(D)). Note that the boundary operator R
may also have a random dependence, but for simplicity in this work we assume that R is deterministic. In general, the var-
ious sources of randomness (e.g., random parameters in £, initial/boundary conditions, driving terms) may arise from phys-
ically unrelated phenomena; thus, they can be independent and non-identically distributed.

In order to apply the methods that will be discussed later, the random dependence of operators £ and f must satisfy a few
important properties. The first requirement, commonly known as a “finite-dimensional noise assumption” [14,4], is that the
random input can be represented with a finite-dimensional probability space. More specifically, the random input can be
represented by a finite set of random variables {Y;(w), Y2 (w),...,Yn(w)}, with a known joint density function p. With this
assumption on the random input, the problem (1) can be restated as follows. Find u : D x Q — R such that

L&, Y1(@),Ya(@),.... Yn(@);u) = f(X,Y1(0), Y2(0), ..., Yn(®))

holds Vx € D and for P-a.e. w € Q, with corresponding boundary conditions. Using the Doob-Dynkin Lemma [43] we can as-
sert that the solution u(x, w) can be written as u(x,Y(w)) with Y = (Y4, Y5, ..., Yy). Then, the problem may be recast from the
space Q into the target space of the N random variables. Let Y = (y;,¥,,...,yy) € ' = Hj’il I';, where T is the image of Y;(Q)
forj=1,...,N.Let p(Y) be the probability density function (PDF) of Y. The problem can be restated: Find u : D x I' — R such
that p-almost everywhere for y € I" the following equation holds:

{ Lxy;u)=f(xy), xeD,

R(x,u) = g(X), xcaD. (2)

Thus, the original problem (1) is recast as a fully deterministic problem in equation (2). It is sometimes useful to think of the
solution u as a function on I, taking values in W(D). In this case we would denote u(Y) to be the Banach-valued solution to
the problem for a particular Y € I.

3. ANOVA decomposition

The ANOVA decomposition dating back to Fisher in [35] states that an N-dimensional function f can be decomposed as
follows:

N N N

f(X1,X2, s XN) =fo+ th (Xh) + Zﬁpjz (Xh >X]2) + Z f}1,iz~j3 (Xh 7sz7xf3) to +f}1w-JN(X]1 reee 7XjN)7 3)
N J1<)2 J1<U2<J3

where fy is a constant, f;, is a one-dimensional function, and so on.

Based upon the decomposition idea of (3), a ‘sparse FEM’ method proposed in [42] deconstructs the N-dimensional poly-
nomial chaos approximation problem into a series of approximation problems on ‘sparse’ polynomial chaos bases spanning
different groups of subdimensions. If the high-dimensional problem has low effective dimension (i.e., it can be sufficiently
approximated by a series of low-dimensional subproblems), this type of approach can greatly alleviate the computational
burden. In the following we formulate the MEPCM-A which combines this subset decomposition approach with the MEPCM.

4. MEPCM-A formulation

The formulation of MEPCM-A basically involves performing the standard MEPCM [1] on a series of low-dimensional prob-
lems using the aforementioned ANOVA decomposition. Therefore, we describe the MEPCM portion of the formulation briefly
and refer the reader to [1] for more details. The point we emphasize here is the subset decomposition of the high-dimen-
sional integration problem into a series of low-dimensional integration problems.

Let u: D x I' — R be the exact solution to our general problem (2). Here, I' = [a;, b;]" is a rectangular hypercube in R". For
every subset K c {1,...,N}, let Iy be the tensor product of the slices of I" restricted to each dimension in K. For example, if
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K ={1,4},T'cx = [a1,b1] x [a4,bs]. We define {A"'K},Nf] to be a nonoverlapping rectangular mesh of each I'k. Then, let
B = A x I';y where K’ is the complement of K in {1,...,N}. The MEPCM-A stochastic semidiscrete solution is given by

the following:

Ng
Inui(X,y) = S v | D0 L Thu®.y) |, 4)
Kc{1,..N}, [K|<v i-1
where
Th u,y) = > u(x, gi)h(v) (5)
keNY ki<, supp (k)=K
and

v .
v =217, ©®)
=
Here, u represents the number of points used in the interpolation rule in each dimension and thus governs the order of poly-
nomial interpolation (it does not need to be the same in each dimension but we assume this for simplicity). In addition, v is
the highest dimension of each subproblem, and N is the total number of dimensions in the problem. The interpolation abscis-
sas i = (¢} >~ qy,) are chosen to be the roots of tensorized orthogonal polynomials in A" of order p. More specifically,
for n € K, the points ¢!, ,,m = 1,..., i are the y roots of the orthogonal polynomial of corresponding order in dimension n of
A and g, equals the midpoint of [ay, b,] for any n € K'. (Note here that we choose the midpoint as the anchor point for the
ANOVA cuts. In future work we investigate techniques for choosing optimal anchor points to increase accuracy [44]). The
interpolating polynomials in each element are given by: L (y) = [T\, L (¥n) Here, if n € K, then lfmk"( .) is the Lagrange

n=1"nk,

interpolation polynomial of degree u through the point g}, restricted to B satisfying:

:1‘k,1 (q;‘jn) = 5/<n.jn7 jn =1,... » U

Otherwise, if n € K', I;,k"( .) = 1. The py;, are the weights associated with each subproblem and derived from Proposition 5.1
in[11].

Remark. Some results regarding the error and convergence rate associated with this discretization in the single-element
case (Nf =1 for all subsets K) are presented in [42] for an elliptic boundary value problem with a stochastic diffusion
coefficient possessing a piecewise analytic two-point correlation. Further analysis of the truncation error associated with v in
the full multi-element formulation is the subject of ongoing work (Z. Zhang, Brown University, private communication).

Remark. We note that a Smolyak sparse grid interpolation operator can be used instead of full tensor product interpolation
in (5), just as in the formulation of the MEPCM. In this case, the parameter u governing the order of polynomial interpolation
in each dimension would be replaced by s, the sparseness parameter. As s increases, the sparsity of the grid decreases and
thus the size of the point set increases. We refer the reader to [1,4] for a more detailed description of the use of Smolyak
grids in stochastic collocation and the sparseness parameter.

The moments of u are then calculated as in the MEPCM using whichever quadrature rule is associated with the choice of
points, either Gaussian quadrature or Smolyak sparse grid quadrature. The dimension of each MEPCM-A subproblem is
bounded by v, thus introducing an additional stochastic truncation error not dealt with in the standard MEPCM. The interplay
of the two decomposition parameters v and p will be investigated in the following numerical examples.

5. PCM-A numerical studies

We begin by numerically demonstrating the ANOVA-type approach within the framework of the standard one-element
probabilistic collocation in order to provide an understanding of the (v, i) relationship to integration errors.

5.1. Approximation of integrals

We first demonstrate this method on a few simple integrals to elucidate some basic behaviors. As a preliminary example
we construct the 10-dimensional test function u : [-1,1]"° — R.

10 9
- 2 2.2
u= E X+ E XiXii
i1 i1

and approximate the integrals

I: / udx
J=1110
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and

I / u?dx.
(1,110

The reference solutions (obtained using Mathematica) are I : 4.43733(10) and I : 2.16476(10)". Varying parameters y and
v we obtain relative errors for integral I. PCM-A is performed using a tensor product Gauss-Legendre collocation grid. The
relative error is defined as € = “',"’# Table 1 provides the MEPCM-A integration errors of function I for various u and v.
We note that since the function is second-order and utilizes interactions of degree at most two, the choice v, 4 = 2 provides
an exact solution. Table 2 provides the analogous errors for integral II. As expected, the minimum parameters for exactness
are i =3 and v = 4 since the squaring of the integrand has the effect of increasing the effective dimension of the function
and Gauss quadrature with p + 1 points is exact for polynomials of degree 2(u + 1) — 1.
Next we investigate the function u: [-1,1]"° — R

U= X2+ 3x3x% + 3x3x% + CXEX2KE.

If we choose ¢ = 9 the relative error using i = 2, v = 2 is 0.25, and for the choice 1 = 2, v = 3 we have relative error 0(107'°).
Now, suppose we let ¢ = 0.1 instead; then, the error for yt = 2,v = 2 is just 3.7(10) > as we would expect, since this choice of
¢ has an effect similar to lowering the effective dimension of the function.

5.2. Stochastic elliptic problem
Next, we move on to the following classic example of a stochastic elliptic problem. Here, we consider the following prob-
lem: find u : D x Q — R such that P-almost everywhere (a.e.) in Q the following equation holds:

{ V- (a(®% )Vu(x; o)) = f(®) inD,

(3 ) (7)
(%;0) = g(x) on 0D,

where f(x) is assumed to be deterministic for simplicity and a(x; w) is a second-order random process satisfying the follow-
ing assumption:
Assumption. Let a(x; w) € L*°(Q;DW(D)) be strictly positive with lower and upper bounds a,,;; and amax, respectively,
0 < Gmin < Amay and P(a(X; ®) € [Amin, Amax] VX € D) = 1.
We assume that the random input a(x; @) can be expressed as a finite expansion of independent random variables.

In the first example we choose D = [0, 1],u(0) = 0 and u(1) = 1 with random input

a(x; ) =20 + Z 1 (iX)Yi(w), (8)
where the Y; are independent uniform random variables on [-1,1]. Note that strong ellipticity is preserved Vo € Q.

The (single-element) PCM-A method is used with a full tensor product Gauss-Legendre grid of (¢ + 1) points in each
dimension for every subset. The spatial discretization error is negligible. The parameter y = 3 is kept constant while v is in-
creased, and the solution is compared with the Monte Carlo solution with 25 million samples. Fig. 1 shows the spatial L~
errors in mean solution obtained. The L* error of two numerically integrated functions f(t;) and g(t;),j = 1,...,n; is defined

Table 1
Relative errors for integral I, for various parameters v, u. Since the function is second-order polynomial and utilizes interactions of degree at most two, the
choice v, u = 2 provides an exact solution.

v n=1 n=2 u=3

1 1.308 0.231 0.231

2 3.385 43(10)°" 2.7(10)°

3 3.385 2.19(10)° 1 2.85(10)7 1
Table 2

Relative errors for integral II. As expected, the minimum parameters for exactness are i =3 and v = 4 since the squaring of the integrand has the effect of
increasing the effective dimension of the function and Gauss quadrature with u points is exact for polynomials of degree 2u — 1.

v u=1 n=2 n=3 u=4

2 5.859 0.133 0.302 0.302

3 13.4 0.147 0.0327 0.0327

4 16.076 0.180 4369(10)" " 1.160(10)7™
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to be €~ = maxj_1,_ {If(t;) — g(t;)|}. It can be seen in Fig. 1 that the error is dominated by MC standard error for v > 2. In
Fig. 2 we plot the error between the PCM-A and a reference PCM solution with 1,048,576 Gauss-Legendre tensor product
points. Here, we observe convergence to the reference solution as v is increased. To illustrate the computational cost of these
calculations, Table 3 shows the total number of points used at each level of v and also the number of subproblems required
for the computation.

Next, we investigate the relationship between parameters ¢ and v on the convergence of the PCM-A method for this prob-
lem. Again, a Gauss-Legendre tensor product grid is used in each subset. To test convergence, v is increased from 1 to 4, and
for each v, u is increased from 1 to 5. We define the L® error between two numerically integrated functions g(t;) and

ft),j=1,....n; as:

ne N )2
ELZZ,% E»:1<g<r> o o
Yraf()?

where f is considered to be the reference solution. A reference solution is calculated using sparse grid PCM with sparseness
parameter s = 17 and 652,065 nested Clenshaw-Curtis points.

Table 4 shows the number of points used for each parameter set as well as the L™ errors for the mean and variance of the
solution. For a more visual representation of results, Fig. 3 (left) shows the L? errors for each (v, 1) parameter set. We observe
that for each v, there exists a lower bound on the error beyond which increasing y does not improve the solution. This is
therefore error the of truncating the stochastic interaction dimension of the problem to v. We also note that the optimal path
to convergence for this case is achieved by choosing pt = v + 1 and increasing v. However, the same convergence rate (but
lower accuracy) is also achieved using the choice p = v.

e This suggests that u and v should be simultaneously increased to achieve monotonic convergence.

The errors are clearly the highest when p is chosen to be 1 for any v. This can be seen more clearly in Fig. 3 (right) where
the errors are plotted as a function of computational work (total number of points sampled). There, it is clear that the rela-
tionship between computational effort and error is non-monotonic. Therefore, it is important to make a judicious choice for
(v, ) when using this method.

We also consider the case where the order of the coefficients of a(x, @) is reversed so that the largest coefficient multiplies
the highest order sinusoidal function:

a(x; ) =20 + Z - sin(ix)Y;(w), (10)

3.5

—O6— PCM-A
standard error of MC (95% confidence)|

L_ error of mean

Fig. 1. Error in mean between PCM-A solutions of the stochastic elliptic problem with a 10-dimensional random input (8), at varying v and a reference MC
solution with 25 million samples. The Monte Carlo computed standard error is also plotted.
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Fig. 2. Error between PCM-A solutions of stochastic elliptic problem with a 10-dimensional random input (8), at varying v and a reference PCM solution
with 1,048,576 points. The Monte Carlo computed standard error is also plotted for 25 million samples.

Table 3
Total number of points and number of subproblems used for the PCM-A computations for the 10-dimensional random input (8) whose error is plotted in Figs. 1
and 2.
v Total # of points # of subproblems
1 41 11
2 761 56
3 844 176
4 62,201 386
Table 4

PCM-A is performed using Gauss-Legendre tensor product grid points in each subset for the stochastic elliptic problem (7) using a 10-dimensional random
input with exponentially decaying coefficients (8). This table shows the computational costs associated with each (v, 1) pair along with the L* errors in mean
and variance. The reference solution is calculated using sparse grid PCM with sparseness parameter s = 17 and 652,065 nested Clenshaw-Curtis points.

v u Number of points Mean error (L™) Variance error (L)
1 1 21 1.0625e—02 2.5084e-03
2 31 1.4125e—04 7.5214e—-05
3 41 2.8307e—04 1.4376e—04
4 51 2.8617e—04 1.4559e—-04
5 61 2.8625e—04 1.4564e—04
2 1 201 1.3488e—02 3.9159e-03
2 436 2.1277e-04 1.0289e—04
3 761 6.0328e—06 1.6686e—06
4 1176 6.1993e—-06 3.7767e—06
5 1681 6.3043e-06 3.8624e—-06
3 1 1161 1.3712e-02 4.0607e—03
2 3676 2.1687e—04 1.0794e—-04
3 8441 6.6734e—06 3.9882e—-06
4 16,176 2.4737e—-07 1.0209e—07
5 27,601 7.7124e—-08 8.2200e—08
4 1 4.521 1.3714e—-02 4.0652e—03
2 20,686 2.1688e—04 1.0803e—04
3 62,201 6.6994e—06 4.0743e—06
4 14,743 2.7190e—-07 1.8437e—07
5 299,761 1.2529e-08 8.9012e—-09
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Fig. 3. L? error of PCM-A solution of the stochastic elliptic problem (7) using a 10-dimensional random input (8) with Gauss-Legendre tensor product grids
in each subset. Left: varying colors indicate different levels of v, and for each line, x is increased from left to right in the range 1-5. The reference solution is
calculated using sparse grid PCM with g = 17. Right: errors are plotted versus the number of points used in each computation. The points corresponding to
the cases 4 =v and u = v+ 1 are labeled.

where the Y; are independent uniform random variables on [-1, 1].

In Fig. 4 we compare the PCM-A variance errors for the stochastic elliptic problem with exponentially decaying and expo-
nentially increasing coefficients. Once again, Gauss-Legendre points are used for each subset and a sparse grid PCM solution
is used as the reference. Choosing u = v and u = v+ 1 and increasing v ensures a monotonic convergence. As expected, the
errors for the exponentially increasing coefficients case are larger since the high-order spatial basis functions are given hea-
vier weights.

6. MEPCM-A numerical studies

In this section we study how the convergence of MEPCM-A is affected by v, i and the adapted mesh discretization of the
random space. We will also compare the errors of using several methods including MEPCM-A, sparse grid PCM and PCM-A
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Fig. 4. Comparison of PCM-A L? error in variance for the stochastic elliptic problem with exponentially decaying and exponentially increasing coefficients of
a. A Gauss-Legendre collocation grid is used in each element. Errors are shown for increasing v, for cases y=vand u=v+ 1.
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with the same computational costs. For these purposes, we will revisit the example one-dimensional stochastic elliptic prob-
lem in (7) with the stochastic input given in (8).

6.1. Adapted mesh

We are especially interested in investigating how adaptive mesh refinement of MEPCM-A affects the efficiency of the
method. In the first example, we use an adapted mesh in which only the two dimensions with highest coefficients are dis-
cretized. In these top two directions, two elements per side are used, and in the remaining dimensions only one element is
used. A Gauss-Legendre grid is used to prescribe collocation points in each element in each subset.

Table 5 shows the computational cost associated with each choice of (v, i) as well as the L* errors in mean and variance
of the solution. Once again the reference solution here is calculated using sparse grid PCM with sparseness parameter s = 17
and 652065 nested Clenshaw-Curtis points. In Fig. 5 (left) we plot the L? errors using MEPCM-A on this adapted mesh. We
observe a similar type of convergence as v and u vary and again conclude that g and v should simultaneously be increased for
fast convergence. Fig. 5 (right) shows the L? error in variance versus the amount of work performed for each computation.
We observe similar convergence behavior as in the PCM-A case, wherein there exists a truncation dimension error associated

Table 5

MEPCM-A is performed using Gauss-Legendre tensor product grid points in each subset for the stochastic elliptic problem (7) using a 10-dimensional random
input with exponentially decaying coefficients (8). The first two dimensions (with highest coefficients) are discretized in the MEPCM mesh. This table shows the
computational costs associated with each (v, i) pair along with the L errors in mean and variance. The reference solution is calculated using sparse grid PCM
with sparseness parameter s = 17 and 652065 nested Clenshaw-Curtis points.

v u Number of points Mean error(L>) Variance error (L)
1 1 25 2.9383e-04 1.4956e—04
2 37 2.8631e—04 1.4568e—04
3 49 2.8625e—04 1.4565e—04
4 61 2.8625e—04 1.4565e—04
2 1 281 1.5423e—05 9.4854e—06
2 613 6.3832e—-06 3.9240e-06
3 1073 6.3094e—-06 3.8668e—06
4 1661 6.3085e—06 3.8660e—06
3 1 1881 1.1368e—05 6.3268e—06
2 6013 1.8814e—07 1.9281e-07
3 13,873 8.0918e—-08 9.3400e—08
4 26,661 8.0219e—-08 9.1476e—08
4 1 8377 1.1369e—05 6.2687e—06
2 38,899 1.5636e—07 1.0251e—-07
3 117,809 3.2357e—09 2.6457e—09
4 280,411 5.2590e—10 7.4695e—10
L2 variance error vs work (Adapted Mesh): exp. decaying coefficients
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Fig. 5. L? error of MEPCM-A solution of the stochastic elliptic problem (7) using a 10-dimensional random input (8) with Gauss-Legendre tensor product
grids in each element of each subset. The first two dimensions (with highest coefficients) are discretized in the MEPCM-A mesh. Left: Varying colors indicate
different levels of v, and for each line, u is increased from left to right in the range 1-4. Right: L? error of the variance vs. computational cost. The points
corresponding to the cases y = v are labeled along with selected other points. The reference solution is calculated using sparse grid PCM with q = 17.



1546 J. Foo, G.E. Karniadakis / Journal of Computational Physics 229 (2010) 1536-1557

with each v and a point beyond which increasing u has little improvement on the error. Other cases including refining only
the first and first three dimensions were also considered and results will be shown in Section 6.3.

6.2. Uniform mesh

Next we investigate the case where all dimensions are discretized equally with two elements on each side. In Fig. 6, we
compare the performance of the sparse grid MEPCM-A with two different types of grids in each element: Clenshaw-Curtis
sparse grids versus full tensor product Gauss-Legendre grids. For sparse grids, the sparseness parameter s used in each sub-
problem is the same level above the dimension of each subset. We observe that the full tensor product grids are actually
slightly more efficient than the nested sparse grids — and conclude that in the regime where MEPCM-A is most useful (when
small v is sufficient), sparse grids do not provide a significant advantage. Since Gaussian quadrature grids offer much more
robust integration and the number of points between consecutive sparseness levels is large, we prefer to use this choice for
MEPCM-A.

6.3. Comparison with other methods

In this section we compare the efficiency of MEPCM-A and PCM-A to the standard probabilistic collocation method (PCM)
using nested sparse grids for the 10-dimensional elliptic problem. We use tensor product Gauss-Legendre grids for MEPCM-
A and PCM-A, and sparse Clenshaw-Curtis grids for the PCM. MEPCM-A is calculated using three meshes wherein the top
one, two, and three dimensions (in importance) are discretized, and also using one mesh where all dimensions are discret-
ized. We see in Fig. 7 that we achieve convergence of the ANOVA-type methods by increasing i and v simultaneously, using
either 4 =v or u = v+ 1. Convergence for PCM is achieved by increasing the sparseness parameter s, and a reference solu-
tion is calculated using sparse grid PCM with s = 17.

We observe in Fig. 7 that while all of these methods converge to the correct solution, MEPCM-A provides an improvement
over PCM-A for the adapted mesh cases and performs quite poorly for a uniform mesh, as expected. MEPCM-A with the top
few dimensions discretized is competitive with sparse PCM computational efficiency for all error levels. Note that MEPCM-A
provides the ability to deal with solutions with low stochastic regularity, a feature that is not highlighted here since this
example problem is smooth. These results suggest that with the coupling of an ANOVA-type decomposition to mesh-adap-
tive MEPCM, we may be able to address problems with low regularity in high dimensions, while still preserving the compu-
tational efficiency of single-element sparse grid methods which scale well with dimension.

Error vs work for MEPCM-A, Sparse and Full grids
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Fig. 6. Error versus work for full and sparse grid MEPCM-A performed on the stochastic elliptic problem (7) using a 10-dimensional random input (8) with
Gauss-Legendre tensor product grids in each element of each subset. Every dimension is discretized with two elements in the MEPCM-A mesh.
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Error vs. work: Comparison of MEPCM-A, PCM-A, PCM
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Fig. 7. [? error in mean versus computational cost for the stochastic elliptic problem with 10-dimensional random input. MEPCM-A1: adapted mesh refined
in top dimension, MEPCM-A2: adapted mesh refined in top two dimensions, MEPCM-A3: adapted mesh refined in top three dimensions, MEPCM-AU:
uniform mesh refined in all dimensions. All MEPCM-A and PCM-A computations use full tensor product Gauss-Legendre grids in each element of each
subset. PCM is calculated using a sparse Clenshaw-Curtis grid.

6.4. Random process inputs

We also consider a higher-dimensional case when a is defined to be a second-order random process with covariance
kernel:

Cov(x,y) = exp {_¥} (17)

For this covariance kernel, exact forms for the Karhunen-Loéve (KL) eigenfunctions and eigenvalues can be found [45]. We
utilize these eigenpairs to define a truncated expansion (with the same form as a KL expansion) in terms of independent
uniform random variables on [—1,1]. Note that this cannot technically be termed a KL expansion since the distributions
of the random variables in a KL expansion are derived from the random process itself, and here we specify only the covari-
ance kernel of the process. Here, we define the process a to be a truncated expansion in terms of uniform random variables
having the desired covariance structure, by utilizing the KL expansion form and eigenpairs. We use a correlation length
b = 0.5 and truncate the expansion after 50 terms. The random variables in the expansion are taken to be uniformly distrib-
uted on [-1,1]. MEPCM-A is performed with an adapted mesh discretizing the first two dimensions and a Gauss-Legendre
collocation grid is used in each element (12,073 points are used in total). To calculate the error, sparse grid PCM with 171,901
points was performed. The L* error in mean and variance are 3.2(10) % and 3.2(10)"'°, respectively, and the L? error in mean
and variance are 3.9(10)® and 3.6(10)"®, respectively.

We also consider the two-dimensional stochastic elliptic problem on D = [0, 1. We use a non-zero force term with homo-
geneous boundary conditions

f(x) = sin(x) cos(x,) and E[a](x) = 1. (12)
Assume that the random field a(x, w) satisfies the Gaussian correlation function:

2
K(x1,%,) = o%e 72
with A = 1 being the correlation length and 6 = 0.3 the standard deviation. Due to the analyticity of the Gaussian kernel, the
eigenvalues decay exponentially [10]. The decay rate is determined by the value of the correlation length, where a larger A
corresponds to a faster decay rate. Since the Gaussian kernel is analytic, high-order element methods for spatial discretiza-
tion convergence quickly, resulting in highly accurate numerical solutions for the eigenvalue problem in the Karhunen-
Loéve expansion. Once again, using the KL eigenpairs calculated for the Gaussian kernel, the random input a is defined to
be a truncated expansion in terms of uniform independent random variables on [-1,1].
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2D elliptic problem with 10—term Karhunen-Loeve expansion input 2D elliptic problem with 50-term Karhunen-Loeve expansion input
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Fig. 8. Errors of MEPCM-A solution to the two-dimensional stochastic elliptic problem (7) on D = [0, 1]* where a is a random process with a Gaussian
covariance structure. The process a is defined using Karhunen-Loéve eigenpairs calculated for the Gaussian kernel as an expansion in terms of independent
uniform random variables on [—1, 1] (left: A 10-dimensional truncation of the expansion. right: a 50-dimensional truncated expansion of the same process).
The two dimensions with highest KL eigenvalues are discretized.

Spectral/hp discretization with 64 quadrilateral elements is used in the physical space [46]. In each element, an 8th order
Jacobi polynomial basis is used to construct the approximation space. Errors from spatial discretization are negligible relative
to the stochastic discretization errors.

In Fig. 8 we show the errors of the Hé norm of the solution of MEPCM-A on twolg(amples of this problem. This norm is
defined as the standard Sobolev norm on the space D : Hf”Hg(D) = (fD([f\z + |Vf|2)> . In the left plot, the random input is
taken to be the expansion truncated after N = 10 terms, and in the right plot 50 expansion terms are retained. The reference
solution for each case is calculated via sparse grid PCM with sparseness level s = N + 3. MEPCM-A is performed using tensor
product Gauss-Legendre grids in each element, and the two dimensions with highest eigenvalues are discretized. We ob-
serve that as expected, the errors decrease as both u and v are increased. We note that this behavior is not modified by
greatly increasing the dimension of the problem.

Error vs. Work: f6integration (DISCONTINUOUS)
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Fig. 9. Comparison of the relative errors between MEPCM-A and Clenshaw Curtis sparse grid PCM on the DISCONTINUOUS test function fs. The total
number of random dimensions N = 10 and MEPCM-A is performed using Gauss-Legendre points on a mesh adapted to the discontinuity.
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6.5. Integration of Genz test functions

In this section we consider the some integrands in the multiple integration test suite of Genz [47]. We concentrate in par-
ticular on the integrands from this suite called ‘CONTINUOUS’ and ‘DISCONTINUOUS’ to compare the efficiency of the
MEPCM-A to sparse grid PCM for problems with low stochastic regularity.

The Genz function fs (DISCONTINUOUS) is defined as:

0, if X; >w; or x; > w;,

fe(®) = (13)

N
exp Y cx;, otherwise,
i-1
where x is an N-dimensional vector in [0, 1}”, the w; and ¢; are constants between zero and 1.
Fig. 9 shows the relative errors as a function of the computational effort for the MEPCM-A and sparse grid Clenshaw-Cur-
tis PCM methods. The random dimension N here is 10, the c¢; are chosen to decay exponentially (¢; = 10/2i) and w; = 0.5.
MEPCM-A is performed with Gauss-Legendre points on an adapted mesh where the first two dimensions are discretized
so that the discontinuity falls on the boundary of the elements. The sparse grid PCM fails to converge with this example.
To contrast, we also consider the CONTINUOUS test function fs, using the same coefficients c; and w; as for fs. This function
is defined as:

N
f5(x) = exp (— > cilxi - w,-|2>A
i=1

In this case, the sparse grid PCM converges to the correct solution with very good efficiency. We perform MEPCM-A with the
first three dimensions discretized and a Gauss-Legendre collocation grid in each element. In Fig. 10 we observe the MEPCM-
A still performs just as well as the highly efficient sparse grid PCM for this moderate dimensional problem. In the next sec-
tion we consider high-dimensional cases where N > 100.

6.5.1. High dimensional integration

We next perform several high-dimensional integrations of fs where N = 100, 200, and 300 using MEPCM-A. Once again an
adapted mesh discretizing the first two dimensions is used, and the c; are chosen to decay as ¢; = exp(-3>%/(N-1)) (sg that the
coefficients are bounded away from zero). Table 6 shows the computational costs and errors for various choices of (v, ). We
see that for the 100 dimensional case, error on the order of 102 is achieved with just 5 million points. For comparison, using
either tensor product or sparse grid PCM in 100 dimensions with just one element, with a bare minimum of just three points
in each dimension would be computationally intractable, requiring on the order of 10%” points to compute. We observe that
for the 200 dimensional case, error on the order of 1072 is achieved with 37 million points, and for the 500 dimensional case,

Error vs. work: fsintegration (CONTINUOUS)
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Fig. 10. Comparison of the relative errors between MEPCM-A and Clenshaw Curtis sparse grid PCM on the CONTINUOUS test function fs. The total number
of random dimensions N = 10 and MEPCM-A is performed using Gauss-Legendre points on a mesh discretized in the first three dimensions.
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error on the order of 10" is achieved with 570 million points. As N increases, the number of dimensions contributing to the
integrand also increases; thus the error associated with addressing only subproblems of dimension less than or equal to v
increases as N increases. The number of points required for each (u, v) discretization increases with increasing N as well. This
example suggests that MEPCM-A can be a powerful tool for problems with high nominal dimension N but low effective
dimensionality.

We note that although we increase the computationally tractable number of dimensions by incorporating the ANOVA
decomposition, there still exists a dimension limit beyond which Monte Carlo simulation is more efficient for moment cal-
culation. This is due to the fact that the computational costs of MC simply scale more favorably with increasing dimension.
We are then interested in asking the question: as we increase the number of stochastic dimensions in a problem, where is
the crossover point beyond which Monte Carlo is more efficient that the MEPCM-A and other stochastic collocation variants?
This crossover dimension is of course dependent on the problem and the particular error tolerance we seek, but addressing a
simple example problem may shed light on relative differences between crossover dimensions of the various methods.

As an illustrative example, we now focus on the DISCONTINUOUS integrand fs given in (13). We choose: ¢; = exp4),
A=0.2, and w; = 0.5, and we set a relative error tolerance of € = 10~%. As the dimension is increased, relative contributions
from additional dimensions decrease in importance as would be expected in a Karhunen-Loéve input, for example. In Fig. 11
we compare the minimum number of points required to achieve an error less than the tolerance for various random dimen-
sions. The MC estimates are achieved by calculating the standard error of the estimator for the mean; we plot the number of
samples required so that the MC sample mean is within € relative error of the true solution with 95% confidence. The PCM
and PCM-A methods both fail to converge for this problem due to the discontinuities. The MEPCM is performed with an
adapted mesh in which only the first two dimensions are discretized, with full Gauss-Legendre and sparse Clenshaw-Curtis
grids. Lastly, the MEPCM-A is computed with an adapted mesh in which only the first two dimensions are discretized, and
full Gauss-Legendre grids are used in each element. We note that for the MEPCM-A, the choice v = 4, i = 2 approximates the
function with sufficient accuracy at any dimension, due to the decaying nature of the coefficients. Beyond 100 dimensions,
the exact reference solution is difficult to compute. Thus, the dashed line represents estimation of the continued MEPCM-A
line by calculating the number of points required for the same (v =4, i = 2) choice.

Remark. We note that this example illustrates the fact that boundary issues should be considered when making a choice of
grids. In this case, the MEPCM with sparse grids is less efficient than with tensor product grids at low dimensions due to the
fact that Clenshaw-Curtis points fall on the boundary of the elements, which meet at the discontinuities of fs. Thus, it is
important to consider that any single grid point of a collocation grid is given a non-negligible weight, as opposed to a
probability measure of zero, so care must be taken not to place points directly on discontinuities or singularities where the
function is not indicative of surrounding points.

From this illustration we observe that the crossover point beyond which Monte Carlo is favorable to MEPCM-A (approx-
imately 600 dimensions) is significantly higher than the crossover point for MEPCM full and sparse grid methods (less than
50 dimensions).

6.6. Hierarchical nature of the subset decomposition
Finally, we observe that all subsets used in the calculation of a solution with parameters (v — 1, ) are also used in the

calculation of our solution with parameters (v, it). Thus, it is possible to retain the moments calculated in each subset
and recompute the solution that would have been obtained with all lower values of v. Then, the percentage difference be-

Table 6
MEPCM-A errors and computational costs for 100-500-dimensional integration of test function fg (DISCONTINUOUS).
N (v, 1) Relative error Number of points
100 (1,1) o(1) 103
(2,2) 0.0197 20,801
(3,3) 0.0098 4,677,148
200 (1,1) o(1) 203
(2,2) 0.067 81,601
(3,3) 0.047 36,714,298
300 (1,1) o) 303
(2,2) 0.12 182,401
(33) 0.09 123,111,448
400 (1,1) o) 403
(2,2) 0.22 323,201
(33) 0.07 290,868,598
500 (1,1) o) 503
(2,2) 043 504,001
)

0.21 566,985,748
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Computational work required for error tolerance 107 vs. Dimension
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Fig. 11. Top: Minimum computational effort required to achieve error tolerance of € = 10 * for approximating the integral of DISCONTINUOUS (f;) function
with exponentially decaying ¢; Bottom: same plot on log-log axes. For MC, we plot the number of samples required such that the MC sample mean is within
€ relative error of the true solution with 95% confidence. The MEPCM is performed with an adapted mesh in which only the first two dimensions are
discretized, with both full Gauss-Legendre and sparse Clenshaw Curtis points. The MEPCM-A is performed with an adapted mesh in which only the first two
dimensions are discretized, with full Gauss-Legendre grids. We note that for the MEPCM-A, the choice v =4, = 2 approximates the function with
sufficient accuracy at any dimension, due to the decaying nature of the coefficients. Beyond 100 dimensions, the exact reference solution is difficult to
compute. Thus, the dashed line represents estimation of the continued MEPCM-A line by calculating the number of points required for the same (u,v)
choice.

tween the (v, 1) solution and solutions with lower values of v can be calculated. This can be useful in determining when a
particular level of v is not sufficient for a given problem; if the percentage difference between the solutions at levels v — 1
and v is large, it is likely that the effective dimension of the problem is higher than v.

We demonstrate this on the function fs (DISCONTINUOUS) in 10 dimensions with exponentially decaying c; in Fig. 12. For
this problem the choice v = 2 is sufficient for a fairly good approximation of the integral, and subsequently higher levels of v
provide smaller contributions.
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7. Modeling subsurface contaminant transport through heterogeneous media

To demonstrate the computational tractability of MEPCM-A on complex realistic problems, we apply this method to study
subsurface contaminant transport in natural porous media. In such problems, uncertainty arises from a lack of information
concerning physical features and events or a lack of understanding of the processes controlling groundwater flow and trans-
port. It is important to understand these uncertainties and their potential impact on model results.

Until recently, quantifying uncertainty in the outcome of these problems was performed with Monte Carlo simulation.
Unfortunately, the expense of MC simulation is too costly to provide reliable results. For simple probabilistic models of
the hydraulic properties (with low random dimension), stochastic finite element techniques have been able to speed up
the computations significantly. However, realistic representation of these features requires the capability of handling
random inputs with high dimension. In this section we aim to apply the MEPCM-A to address this problem with
high-dimensional random inputs, using results of simpler studies in the previous section to judiciously make parameter
choices.

7.1. Background

We focus in particular on the US Department of Energy’s Hanford Site, which is located along the Columbia River in south-
eastern Washington. During the Hanford site’s 60-plus years of history, there have been more than 1000 individual sources
of contaminants distributed over 200 square miles mostly along the Columbia River. A total of 450 billion gallons of contam-
inated liquid were spilled containing radioactive materials such as cesium, strontium, technetium, iodine, uranium, neptu-
nium and plutonium and large quantities of organic contaminants such as carbon tetrachloride [48]. Stewardship efforts for
this site require detailed modeling and prediction of the subsurface transport of these contaminants. However, the hydraulic
properties of the subsurface are highly heterogeneous and difficult to fully characterize.

The ability to describe subsurface heterogeneities in quantitative terms and to incorporate this quantitative description
into computer models is a key element in predicting transport of subsurface contaminants and the reduction of modeling
uncertainties. While all subsurface environments are clearly deterministic, numerous experimental data sets suggest that
the permeability varies significantly in space in a manner that cannot be described with certainty. Consequently, over the
last decade it has become common to treat these quantities as spatially correlated random fields, thereby making velocity
and saturation spatially correlated random fields as well. Hence, probabilistic descriptions using spatial stochastic processes
may be employed to describe the variations in the geologic structure at the Hanford site. Fig. 13 (from [49]) is a map showing
the location and areas surrounding the Hanford site — Pasco Basin. The regional aquifer system extends from western Idaho
through eastern Washington and northeastern Oregon. This problem has been studied extensively in stochastic hydrogeol-
ogy (e.g., [50] and references therein).

6 solution

Percentage error of v

10 I I I I I I I

Fig. 12. Percentage error between MEPCM-A solutions with v < 6 and the MEPCM-A solution with v = 6. This is accomplished via re-postprocessing of the
MEPCM-A solution at v = 6.



J. Foo, G.E. Karniadakis /Journal of Computational Physics 229 (2010) 1536-1557 1553
7.2. Mathematical model
In this section we consider natural stochastic extensions of Darcy’s law and mass conservation in order to address the
effect of variability in the hydraulic conductivity, K, on the piezometric head, h.
q=-Kxw)\Vhxw), -V-q+f=0, (14)

where we have assumed for simplicity that the source term is zero and that the problem is steady. Then, the system reduces
to the stochastic elliptic problem

—V - (K(x; w)Vh(x; w)) = 0. (15)

The domain of this problem is the region within the model boundary detailed in Fig. 13. Boundary conditions have been
modeled by the authors of [49] via analysis of hydrologic properties including permeability of the bedrock, recharge vol-
umes, runoff of precipitation, and many other factors. A schematic of the lateral boundary conditions is shown in Fig. 14.
There, various regions are marked where either the value of the piezometric head are specified, the Darcy flux is specified,
or zero flow is imposed on the boundary.

7.3. Results

We perform the PCM-A on the problem in Eq. (15) with boundary conditions on the physical domain as given in Fig. 14.
The random hydraulic conductivity, K, is modeled as a spatially correlated random process on the domain with a standard

Washington

D Columbia Plateau

[ PascoBasin

—— Model Boundary

Cold Creek and Dry Creek Drainage Areas
Approximate Extent of WASHINGTON
Saturated Suprabasalt Sediments 00 f——l—.

[ Approximate Pasco Basin

Boundary OREGON

Fig. 13. Extent of regional and local groundwater flow systems beneath the Hanford Site (from [49], Section 4).



1554 J. Foo, G.E. Karniadakis /Journal of Computational Physics 229 (2010) 1536-1557

Columbia River

f
-
J

Paitiis: , -
Cold Creek Valley {i : i 5 oA 'f"" Y
\ = 1 X
“__ 1 T
"m"h‘;‘l“al‘.ﬁ T e m - . SRR EENEEN]
Dry CreekValley  East :

o

1112y

s Specified Head Boundary
m  Spedfied FhuxBoundary ~ Rattiesnake Hills

m===  No Flow Boundary

A— T
-
ipind

Fig. 14. Groundwater flow model grid and lateral boundary conditions (from [49], Section 4).

logarithmic transformation to ensure that it is bounded away from zero. The correlation length is roughly equal to one third
the distance between the points furthest north and south on the domain. The mean of this process is e®5° with ¢ = 0.05, and
the variance is equal to e2°> — e?”. Once again, using the KL eigenpairs calculated for the covariance kernel, the random input
K is defined to be a truncated expansion in terms of uniform independent random variables on [-1,1]. The expansion is trun-
cated after 100 terms. We demonstrate the capability of PCM-A to address high dimensional inputs on this problem.

The spatial discretization is performed using spectral elements on the approximately 15000-element mesh shown in
Fig. 14, with third order Jacobi polynomials on each element. PCM-A is performed using Gauss-Legendre tensor product
grids in each element. In Fig. 15 we plot the first and second moments of the value of the piezometric head over the domain,
for two choices of ANOVA discretization parameter v = 1,2. We observe that the difference between solutions at v =1 and
v = 2 is small. To quantify the difference between these discretization levels we also calculated the mean of the H} norm of
the solution for each case, shown in Table 7.

8. Summary and discussion

In this work, a variant of the MEPCM method utilizing an ANOVA-type decomposition was proposed for dealing with
problems of high random dimension. We first numerically investigated the dependence of the convergence of this method
on the decomposition parameters x and v, concluding that in order to achieve monotonic convergence p and v must be in-
creased simultaneously. In addition, it was shown that for the 10-dimensional stochastic elliptic problem, MEPCM-A with an
adapted mesh performs better than PCM-A and as well as the sparse grid PCM method, which can only be used for smooth
problems. We also demonstrated the MEPCM-A for the integration of functions with low regularity in very high dimensions.
In terms of computational efficiency, from our tests so far we have seen a tenfold speed-up of MEPCM-A compared to sparse
grid techniques.

We also applied the PCM-A to obtain error bars for the piezometric head at the Hanford site under stochastic hydraulic
conductivity conditions. For future uncertainty quantification at the Hanford site, data from drilling samples and knowledge
of the subsurface composition will be incorporated into the stochastic models. It is highly likely that various regions of the
domain will be modeled independently under different spatial random processes, depending on regional geologic variations.
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Fig. 15. PCM-A results for problem (15) quantifying the effect of uncertainty in hydraulic conductivity K on the piezometric head h. The conductivity is
modeled by a 100-term K-L expansion of a lognormal spatial random process. Top row: v = 1 results for mean (left) and standard deviation (right). Bottom
row: v = 2 results for mean (left) and standard deviation (right).

Table 7

Number of points used for each v and mean of the Hj norm of the piezometric head.
\ Number of points [E[HhHH(‘)(D)]
1 401 9.030922763071
2 44581 9.030966179659

Within each region, the estimated correlation length of these processes may be relatively small. Thus, we expect that in order
to realistically represent the variation in conductivity, very high-dimensional random inputs may be required. In future stud-
ies, the MEPCM-A may provide a useful tool for handling such high-dimensional inputs in this complex system. We conclude
that for problems with prohibitively high nominal dimension and possibly low stochastic regularity, the MEPCM-A can be a
useful tool in solving otherwise computationally intractable problems, provided the solution has relatively low effective
dimension or a decay in its interaction weights. However, further investigation is needed to more clearly delineate the class
of problems for which it provides the greatest benefit.

Specifically, it is of great practical importance that further effort is put into incorporating approaches from data mining,
statistics and financial mathematics for estimating the effective dimension. Examples of such work include the report of Caf-
lisch et al. [51] on effective dimension in mortgage backed securities, as well as the work of Wang and collaborators in
[52,39] and references therein. With these techniques, certain classes of high dimensional PDE problems with lower effective
dimension or a decay in the interaction weights of the solution may be detected and treated automatically [33]. It will be
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interesting to also extend MEPCM-A to non-elliptic PDEs; for nonlinear evolution PDEs, like the Navier-Stokes equations,
computing the effective dimensionality is much more complex. (The more fundamental question on the existence of low-
dimensional manifolds in turbulent flows will not be addressed here but physical and numerical evidence points to coherent
structures and relatively low-dimensionality, see [53,54].) Finally, systematic work on obtaining the composite error bound
due to error contributions from the MEPCM representation and the ANOVA decomposition is required.
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