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Electrostatic correlation effects near charged planar surfaces immersed in a symmetric electrolytes
solution are systematically studied by numerically solving the nonlinear six-dimensional electro-
static self-consistent equations. We compare our numerical results with widely accepted mean-field
(MF) theory results, and find that the MF theory remains quantitatively accurate only in weakly
charged regimes, whereas in strongly charged regimes, the MF predictions deviate drastically due to
the electrostatic correlation effects. We also observe a first-order like phase-transition corresponding
to the counterion condensation phenomenon in strongly charged regimes, and compute the phase
diagram numerically within a wide parameter range. Finally, we investigate the interactions be-
tween two likely-charged planar surfaces, which repulse each other as MF theory predicts in weakly
charged regimes. However, our results show that they attract each other above a certain distance in
strongly charged regimes due to significant electrostatic correlations. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4894053]

I. INTRODUCTION

The fundamental description of charged systems is based
on the well-known Poisson-Boltzmann (PB) theory, which
was developed a century ago by Gouy1 and Chapman.2 How-
ever, being a mean-field (MF) theory, the PB formalism ig-
nores fluctuations and correlations, which are important for
the cases of low temperature, highly charged surfaces, or mul-
tivalent counterions. In mesoscopic systems, the fluctuations
are mainly due to the thermal noise, which is of the same order
(kBT) with other characteristic interactions. Also, the rough-
ness of surfaces and solvent inhomogeneities etc. may also
create some fluctuations. These fluctuation and correlation ef-
fects, which may drastically alter the mean-field picture of PB
theory, have been the focus of recent theoretical efforts.3–10

For example, one surprising phenomenon beyond MF theory
is the so-called fluctuation-driven counterion condensation in
a simple system with single charged surface and its oppositely
charged counterions.11–14 Another interesting phenomenon is
the attraction between two highly likely-charged surface im-
mersed in electrolytes or polar solution,14–18 as observed in
experiments and in computer simulations. These phenomena
cannot be captured within PB theories19–21 as PB theory only
predicts pure repulsion between likely-charged surfaces. We
will discuss these interesting phenomena further next.

A simple perturbative expansion about the MF solution
near a charged surface by Netz and Orland7 demonstrated
the breakdown of MF theory with relatively high charge
densities. To go beyond the MF theory framework, non-
linear electrostatic self-consistent (SC) equations were first
derived by Avdeev and Martynov22 within the Debye clo-
sure of the Bogoliubov-Born-Green-Kirkwood-Yvon hierar-
chical equations. Further, Netz and Orland23 re-derived the
SC equations within the field theoretic formulation, using the
Gaussian field variation ansatz. However, as stressed by the
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authors, these coupled nonlinear SC equations are computa-
tionally very complex. The main difficulties come from the
high dimensionality (6D) and the nonlinearity of the cou-
pled equations. Here, we propose a numerical method to solve
these equations at an affordable computational cost based on
the specific properties of the SC equations.

We consider relative simple systems with positive
charged planar surfaces immersed in a symmetric electrolytes
solution with fixed surface charge densities σ s and salt va-
lence q. The solvent is modeled implicitly as a continuous
medium and the electric permittivity is a constant in the solu-
tion, hence, ignoring the solvent inhomogeneities in space,
i.e., these inhomogeneity effects are considered as fluctua-
tions. In general, there are three different length scales in
such charged systems, i.e., the Debye-Hückel length κ−1

= (8πq2lBρb)−1/2 which represents the salt screening effects
in the bulk; the Gouy-Chapman length lG = 1/(2π lBqσ s),
describing the interaction between ion charge and surface
charge; and the Bejerrum length lB = e2/(4πε0kBT) repre-
senting the elementary charge interactions. Here, ρb, e, kBT,
and ε0 are the salt bulk concentration, elementary charge,
thermal energy, and solvent dielectric permittivity, respec-
tively. As suggested by previous studies,14, 23 we can define
a key dimensionless parameter in terms of two lengths as
� = q2lB/lG. On the one hand, the limit � → 0 is called
weak coupling limit, where the thermal fluctuations overcome
electrostatic interactions, thus the physical system can be pre-
cisely described within MF or PB theory. On the other hand,
� → ∞ is the strong coupling limit, where the electrostatic
correlations dominate the thermal fluctuations.3, 23 A pertur-
bative approach around the MF theory may not be valid,
instead, non-perturbative approaches (e.g., the variational
approach) remain accurate in this regime.

The central focus of the current work is to provide ac-
curate numerical results from solving the nonlinear electro-
static SC equations. The simulation data cover a wide param-
eter range, and hence we can examine a complete counterion

0021-9606/2014/141(9)/094703/8/$30.00 © 2014 AIP Publishing LLC141, 094703-1
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condensation phase diagram. We further explore other impor-
tant features of the counterion condensation transition, such as
the order of the phase transition, as well as the scaling prop-
erties of the order parameter and free energy near the transi-
tion point. We also investigate the interactions between two
likely-charged surfaces as a function of separation distance in
salt solution with different coupling parameters.

The paper is organized as follows: we start by re-deriving
of the SC equations via the field theory approach. We then
solve the equations numerically (see Sec. III) with the help of
selective inverse techniques,24 saving both memory storage
and computational time. In Sec. IV, we describe the main nu-
merical results obtained from the SC equations. In Sec. IV A,
we describe the counterion condensation phase diagram and
analyze the associated scaling behavior near the transition
point. In Sec. IV B, we show the full interaction pictures be-
tween two-likely charged surfaces with electrostatic correla-
tion effects. We conclude with a short discussion about the
limitations and future studies are included in Sec. V.

II. SELF-CONSISTENT (SC) EQUATIONS

In this section, we review the derivation of SC equa-
tions with the field theoretic variational approach.23 The grand
canonical partition function of M ion species in a liquid of
spatially varying dielectric permittivity ε(r) is

Z =
M∏
i

∞∑
N

i
=0

eN
i
μ

i

Ni!λ
3N

i

t

∫ N
i∏

j=1

drijχ (rij )e−βH , (1)

where rij is the position of jth ion of type i, λt is the ther-
mal wavelength of point-like ions, and Ni and μi are the total
number and chemical potential of ions of type i, respectively.
The indicator function χ (r) takes into account the presence
of hard walls, χ (r) = 1 in the solution, and χ (r) = 0 inside
the hard walls. In general, the hard surface can be represented
by a hard potential as χ (r) = exp(−V (r)/kBT ), V (r) = ∞,
and we can adjust V (r) to represent different surfaces. H is
the Hamiltonian of the charged system, which consists of two
parts as follows:

H = 1

2

∫
dr′drρ(r)vc(r, r′)ρ(r′) − vb

c (0)

2

M∑
i=1

Niq
2
i , (2)

where the first part is the electrostatic energy with Coulomb
potential defined as v−1

c (r, r′) = − 1
βe2 ∇ · (ε(r)∇δ(r − r′)),

and the second part is self-energy of mobile ions, which
should be subtracted from the total electrostatic energy with
vb

c (r) = lB/r the bare Coulomb potential. Here, we should
note that the self-energy term is crucial for electrostatic corre-
lations. As a first step, the Lennard-Jones (LJ) interactions are
ignored for point charge ions, we will consider the LJ inter-
actions or other short range interactions in our finite size ions
model in the future. The charge density operator is introduced

as ρ(r) = ∑M
i=1

∑N
i

j=1 qiδ(r − rij ) + ρf (r), by assuming that
all the ions are point-like charges. To account for the ion size
effects into the system, a general charge distribution function,
i.e., a Gaussian distribution function h(r, r′), instead of δ(r,
r′), can be used for finite radius ions.8 The grand-canonical
partition function Z is then transformed into a field-theoretic

representation by the usual Hubbard-Stratonovich transfor-
mation, i.e., Z is given by taking the form of a functional
integral over the pure imaginary electrostatic auxiliary field
φ(r); hence, Z = ∫

Dφe−S[φ], with the action functional de-
fined as

S[φ] =
∫

dr
[

ε(r)

2βe2
(∇φ(r))2 − iρf (r)φ(r)

−
∑

i

χ (r)λie
(q2

i vb
c (0)/2+iq

i
φ(r))

]
, (3)

with λi = e
μ

i /λ3
t as the fugacity of ith ion specie, here, we

assume λ+ = λ− = λ for symmetric salt solution. However,
it is still impossible to calculate the above functional integral
to obtain the partition function directly. Various approxima-
tions have been introduced in statistical physics to solve this
problem. The simplest yet most popular approximation is to
replace the functional integral over the electrostatic fields by
the value of the integrand at the extremum or optimal value,
i.e., the saddle point approximation, which determines the op-
timal values of the field given by δS[φ]

δφ
= 0, then it yields the

MF theory equations. Furthermore, for a weakly correlated
system, a perturbative expansion around the mean field gives
more accurate results, however, it breaks down for strongly
correlated systems. Another common way to evaluate the
partition function or equivalent equilibrium measure dP (φ)
= 1

Z exp(−S(φ)) is to create a stochastic process generated
by the Langevin equation dφ(τ ) = − ∂S

∂φ(τ )dτ + dW (τ ), with
W (τ ) the Wiener process, and with the ergodic stochastic pro-
cess having the same measure dP(φ) as t → ∞. However,
this suffers from the long-time integration problem in solving
numerically this stochastic partial differential equations. A
more powerful and effective non-perturbative way is the stan-
dard Gibbs variational procedure. Based on the chosen proper
reference action function S0, the partition functional can be
expressed as

Z = Z0 × 〈exp{−S[φ] + S0[φ]}〉0 ≥ Z0

× exp{−〈S[φ] − S0[φ]〉0}. (4)

The above inequality holds due to Jensen’s Inequality.25 Then,
we approximate the partition function by the upper bound
or optimizing the variational grand canonical free energy
F = F0 + 〈S − S0〉0, where averages 〈...〉0 are to be eval-
uated with respect to the most general Gaussian action
function,
S0[φ] = 1

2

∫
drdr′[φ(r) − iφ0(r)]v−1

0 (r, r′)[φ(r) − iφ0(r)],

(5)
and with F0 = − 1

2 tr ln v0. The variational Gibbs free energy
F is then given by

F = −1

2
tr ln v0 −

∫
dr

[
[∇φ0(r)]2

8πlB
− iρf (r)φ0(r)

]

+
∫∫

drdr′ ∇r∇r′v0(r, r′)
8πlB

−2λ

∫
dreq2(v0(r,r)−vb

c (r,r))/2 cos[qφ0(r)]. (6)
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By extremizing F with respect to v0 and φ0, i.e.,
δF/δv−1

0 (r, r′) = 0 and δF/δφ0(r) = 0, we obtain the SC
equations. For simplicity, only two ion species with symmet-
ric valency are considered here:23

∇ · ε(r)∇φ0(r) − 8πlBqλe−q2δw(r)/2 sinh[qφ0(r)] = −4πlBρf (r),

[∇ · ε(r)∇ − 8πlBq2λe−q2δw(r)/2 cosh[qφ0(r)]]v0(r, r′) = −4πlBδ(r − r′),
(7)

where δw(r) = lim
r→r′

[v0(r, r′) − vb
c (r, r′)] and ε(r) = ε(r)/ε0. We further rescale the SC equations with lG, and by defining

ψ = qφ0, ρ f = ρ flG/σ s, v0 = v0lG/ lB , we obtain the dimensionless equations as

∇ · ε(r)∇ψ(r) − �e−�δv(r)/2 sinh[ψ(r)] = −2ρf (r) (a)

[∇ · ε(r)∇ − �e−�δv(r)/2 cosh[ψ(r)]]v0(r, r′) = −4πδ(r − r′) (b)
(8)

Clearly, there are only two dimensionless parameters in
this physical system from Eq. (8), namely, the coupling
parameter � defined in Sec. I, and the rescaled fugacity
� = 8πλl3

G� exp(−�κlG/2). Here, it is worth mentioning
that we define the ionic self-energy dressed with electro-
static correlations in the form δv(r) = v0(r, r) − vb

c (r, r)

+ lBκ = v0(r, r) − vb
0 (r, r), with vb

0 (r) = l
B

r
exp(−κr)

= limr→∞ v0(r, r), the Debye-Hückel potential in the ho-
mogeneous salt solution (i.e., � = 0, ψ = 0).3, 4 That is, the
reference system is chosen as the far field, such that we can
obtain v0(r, r) and vb

0 (r) simultaneously with same numerical
accuracy, thus, the numerical errors for δv(r) are exactly
canceled.

III. NUMERICAL METHODS

The first of the SC equations is a modified PB equation
for the fluctuating external potential induced by the fixed sur-
face charge, while the second is a modified Debye-Hückel
equation that accounts for the local screening of the electro-
static propagator by mobile ions. Before we proceed to nu-
merically solve the SC equations, we discuss their properties
and subsequently we develop our numerical method based on
these properties. First of all, we note that these two equations
can only be decoupled in the limits � → 0 and � → ∞; and
that an iterative method is needed for general �. Second, these
equations resemble the typical “Bratu problem” �u + αeu

= 0,26 the highly nonlinear term eu becomes a big trouble near
bifurcation points for numerical methods. We note that most
of the iterative methods, i.e., fixed point iteration method or
Newton iteration method only work well before the bifurca-
tion point. However, the bifurcation point is isolated, thus we
can approach the point from one side of parameter space with
the continuation method. Physically, the bifurcation point cor-
responds to the famous counterion condensation phase transi-
tion. Another important aspect and also the greatest difficulty
in solving the SC equations arise from the 6D (r, r′) modified
Debye-Hückle equation; however, only the diagonal informa-
tion (r = r′) is needed for calculating δv(r). Thus, the problem
reduces to finding the diagonal elements of the inverse of the
discrete Debye-Hückel operator. Since the discrete Debye-
Hückel operator is a symmetric and positive denite matrix,

we can use Cholesky or LDL factorization to fully invert the
matrix, but the computational time cost (O(n3)) and storage
O(n2)) are extremely expensive for multi-dimensional prob-
lems. However, the problem is greatly simplified if only the
diagonal elements are needed, which can be achieved by us-
ing the recently developed SelInv package to extract the diag-
onals of a matrix inverse,24 with much smaller computational
time cost (O(n2)) and storage O(n)).

We employ a fixed-point iteration scheme for the solu-
tion of coupled SC equations following two alternating steps:
first, for given δv(r), we solve the modified PB equation for
ψ(r) given the boundary conditions ψ(r → ∞) = 0; next for
given δv(r) and ψ(r), we invert the discrete Debye-Hückel
operator for v(r, r′), and then obtain a new δv(r). These two
steps are iteratively performed until the convergence crite-
rion of the solution is reached; here, we use the relative
free energy as the convergence criterion |F (k) − F (k−1)| < δ,
with k = 1, 2, . . . the iteration step and δ a small pre-set
value.

We consider numerical solutions of the nonlinear modi-
fied PB equation and the discrete form of the Debye-Hückel
operator. The former is often approximated by the linearized
PB equation, obtained by taking sinh (ψ(r)) ≈ ψ(r) when
ψ(r) 
1. The nonlinear modified PB equation presents sev-
eral numerical difficulties due to the rapid exponential non-
linearities, discontinuous coefficients, delta functions (point
charge distribution), etc. The finite volume method has been
one of the standard approaches for discretizing 2D and 3D in-
terface problems which enforce conservation of certain phys-
ical quantities even for the discrete systems. First, we par-
tition the domain � into 3D non-uniform Cartesian mesh,
� ≡ ∪M

j=1τ
j with τ j the jth finite volume. It is important

to notice that all the discontinuities in the coefficients are
taken to lie along the boundaries of τ j. Then, by integrat-
ing the modified PB equation over an arbitrary finite vol-
ume, and employing the divergence theorem for the first
term in the equation, we obtain the algebraic equations in
the form Aψ + N(ψ) − f = 0. We then solve the alge-
braic equation with inexact-Newton method for the mod-
ified PB equation.27, 28 A small trick is used during dis-
cretization for the “Bratu” type problem, i.e., we approximate
the second-order derivative using a nonlinear denominator
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function, (�x)2 = 2.0 ln (cosh (�x)) + O((�x)4) (Mickens
discretization),29 which works well near bifurcation points.

For simple systems with charged planar interfaces lo-
cated at the (y, z) plan, the translational symmetry will greatly
simplify the problem. In such cases, the electrostatic poten-
tial becomes simply a function of the coordinate x, and the
electrostatic Green’s function can be expanded in 2D Fourier
basis, with the Fourier transform of circularly symmetrical
function (Hankel transform) as

v0(r, r′) =
∫ ∞

0

dkk

2π
J0(k|r|| − r′

|||)ṽ0(x, x ′, k), (9)

with J0 the Bessel function. Then, the modified Debye-
Hückel equation can be decoupled as a series of one-
dimensional equations for each k,

[∂xε(x)∂x − ε(x)k2 − �e−�δv(x)/2 cosh(φ(x))]ṽ0(x, x ′, k)

= −4πδ(x − x ′). (10)

Here δv(x) is calculated using Eq. (10) with |r|| − r′
||| = 0,

and the integral is obtained numerically via Gauss quadra-
ture integration by a cutoff at a certain number, which is suffi-
ciently large to account for the contribution from the smallest
correlation length.

Once we solve the above SC equations, the local ion den-
sities are given by

ρ±(r) = ρbχ (r)e− q2

2 δv(r)∓φ0(r). (11)

To further investigate the physical phenomena near the
charged surface, we define a proper order parameter ρ for

ion adsorption by the charged surface as ρ = ∫ l
G

0 (ρ+(r)
− ρ−(r))dr.

IV. RESULTS AND DISCUSSION

A. Single planar surface in symmetric
electrolytes solution

First, we consider one planar charged surface case with
fixed charge density ρ f(x) = δ(x). The results from numeri-
cally solving the SC equations with different coupling param-
eters, such as electrostatic potential, correlation potential, and
ion density distribution near one charged surface, are shown
in Figure 1. Clearly, when � is small, the results from the
SC equations approach the same results as the one from the
PB equation. However, as � increases, the results differ from
the PB results, especially for larger value of �. One of the
interesting phenomena is that there is a peak in the positive
ion density profile near the positive charged surface. This is
due to the strong correlations, which cause overcompensation
of surface charge by negative ions close to or at the surface.
Then, the positive ions which are away from the surface will
“feel” a negative apparent charged surface. Therefore, they
will be attracted toward the wall. This is the so called “charge
inversion” which was observed by previous studies.30–32

As we already discussed at the end of Sec. II, the
state of the simple charged systems is determined by two

FIG. 1. (a) Electrostatic potential ψ(x), (b) correlation potential δv(x), (c) negative ion density ρ−(x), and (d) positive ion density ρ+(x) near one charged
surface with � = 0.3. The black, red, blue, green, and purple lines represent PB results and � = 0.50, 2.50, 3.80, 4.20, respectively. The charged surface is at
x/lG = 0.
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FIG. 2. Numerical solution for the critical coupling parameter �c repre-
sented by circles, at the phase boundary between weakly adsorption and
counterion condensation phases, as a function of the parameter �. The solid
line is a polynomial fit through the data points (circles).

parameters: the coupling parameter �, and the rescaled fu-
gacity �. For various rescaled fugacity values, we change �

from small to large values with small increments and we mea-
sure the free-energy and the adsorbed amount of ions within
a Gouy-Chapman length near the wall ρ. There is obviously a
phase transition when � become bigger corresponding to the
bifurcation point of the SC equation. Above this point, simple
fixed point iteration method will blow up. All of the data near
the transition point are then carefully analyzed.

The numerical results for the phase transition between the
weakly ions adsorption and counterion condensation states

based on the analysis of the free energy are displayed in
Figure 2. The phase boundary curve is constructed by sim-
ulation data within three orders of magnitude in parameter
space. The fact that the counterion condensation transition is
a first-order phase transition is established. As a result, go-
ing from the weakly adsorption state, the free energy and ion
adsorbed amount follow some scaling behavior near the tran-
sition point. To demonstrate the first-order phase transition,
we plot (ρ(�, �) − ρc) as a function of (�/�c − 1) in a
double logarithmic plot in Figure 3(a). A dashed line rep-
resenting slope of 1 has also been included. All data col-
lapse and approach a single scaling power law as shown
in Eq. (12):

(ρ(�,�) − ρc)/�c ∝ (�/�c − 1), (�/�c − 1) 
 1.

(12)

To confirm the first-order nature of the transition, we further
examine the dependence of the free energy per unit volume
as a function of (�/�c − 1) near the transition point. For a
first-order transition, we expect that

(F (�,�)−Fc)/(��c) ∝ (�/�c−1), (�/�c − 1) 
 1.

(13)

The power law exponent 1 is characteristic of the first-order
transition. Figure 3(b) demonstrates that all � cases display
the above power law near the transition point; for comparison,
a dashed line has been drawn with the anticipated power-law
exponent 1. Our numerical results are consistent with previ-
ous studies.11

FIG. 3. Double logarithmic plots (upper) as well as linear plots (lower) of the adsorption ions ρ within the Gouy-Chapman length (left) and the access free
energy F (right) as a function of |� − �c|/�c for various values of � near transition point. The profiles have been plotted by using symbols of four types of
colors for different �, with black (� = 0.1, 0.2, 0.3), red (� = 0.4, 0.5, 0.6), blue (� = 0.7, 0.8, 0.9), and green (� = 1.0, 2.0, 5.0).
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FIG. 4. Electrostatic potential ψ(x) [(a),(e)], correlation potential δv(x) [(b),(f)], negative ion density ρ−(x) [(c),(g)], and positive ion density ρ+(x) [(d),(h)]
near two charged surface for � = 1.0, � = 1.0 (upper) and � = 1.0, � = 2.0 (lower) with different separation distances. The black, red, blue, and green lines
represent separation distance h/lG = 0.5, 1.0, 2.0, and 4.0, respectively.

B. Two planar surfaces in symmetric
electrolyte solution

We now consider the case of two charged planar surfaces
immersed in salt solution with separation distance h, and fixed

charged density ρ f(x) = δ(x − 0.5h) + δ(x + 0.5h). First,
we show electrostatic potential, correlation potential, and ion
density profiles in Figure 4. For small separation distance h,
or strong confinement, the osmotic pressure is extremely big,
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FIG. 5. Free energy (upper) and osmotic pressure (lower) as a function of distance between two likely-charged planar surface in both weakly charged regime
(left, � = 5.0, � = 0.5) and strongly charged regime (right, � = 5.0, � = 1.2).

pushing the ions into the middle of the confinement layer, see
black lines of Figures 4(g) and 4(h). The osmotic pressure
is a key parameter in understanding the thermodynamics and
the interactions in colloidal systems. Here, we calculate the
osmotic pressure from �(h) = − ∂F

∂h
as a function of separa-

tion distance. The results are shown in Figure 5. For a weakly
charged system, the access free energy decreases by increas-
ing the separation distance h, while the osmotic pressure is
pure repulsion. However, in strongly charged systems, the ac-
cess free energy decreases when we increase the separation
distance only within a small regime, i.e., h ∼ lG, and the ac-
cess free energy then increases by increasing the separation
distance for large h, which corresponds to an attractive os-
motic pressure as shown in Figure 5(d). Finally, by calculat-
ing all the osmotic pressure data in the parameter space, we

FIG. 6. Phase diagram for two likely-charged wall interactions as a function
of parameters � and �. Here, red and blue symbols represent purely repul-
sive osmotic pressure and attractive osmotic pressure with certain distance,
respectively. The phase boundary is plotted with black dashed line here.

obtain the global phase diagram for the interactions between
two likely-charged surfaces as shown in Figure 6. The phase
boundary shape here is similar to the one of the counterion
condensation phase diagram (Figure 2) with a shift on the log-
log plot due to the confinement effects.

V. CONCLUSIONS

In this work, we have developed a numerical method for
solving the electrostatic SC equations in order to explore the
parameter space for simple charged planar surfaces immersed
in salt solution. We quantified the physical picture beyond
MF theory, i.e., we established the first-order phase transition
properties of counterion condensation and the phase diagram,
and we calculated the osmotic pressure between two likely-
charged planar surface. For the latter case, we found that the
surfaces may attract each other for a certain separation dis-
tance in strongly charged systems.

For the moment, we only consider very simple geome-
try systems, however, the extension to complex geometry sys-
tems is straightforward. From our current studies, we observe
that the electrostatic correlation energies are mainly located
near the charged surface, thus, an adaptive mesh refinement
scheme should be constructed with most of the grid points
distributed near the charged surfaces. Alternatively, a high-
order Discontinuous Galerkin (DG) method or extensions of
the finite volume method employed here may result in higher
accuracy and efficiency.

Due to the bifurcation nature of the SC equations, our
current fixed point iteration method will blow up above the
bifurcation point, thus, there remains one problem, namely,
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what should we do after the bifurcation point? To this end, we
propose the recursive projection method (RPM)33 to deal with
these situations. On the other hand, physically, we can always
renormalize the charge densities and the condensation ions
into a new charge density, such that the renormalized system
can be solved with our current method again.

Another important aspect is to account for the ion size
effects34–36 in SC equations,8 i.e., the charge on an ion is as-
sumed to have a finite spread around its center, instead of
point charge δ(r − r′). A convenient choice is the Gaussian
distribution with Born radius a,

h(r − r′) =
(

1

2a

)3/2

exp

[
−π (r − r′)2

2a2

]
. (14)

The LJ interactions are ignored for point charges here as a
first step, we plan to include the LJ interactions or other short
range interactions in our finite size ions model. We will dis-
cuss the new model and corresponding numerical results in
our future work.
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