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We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a
viscous stagnation-point flow, by employing both a continuum model represented by Langevin type
stochastic partial differential equations (SPDEs) and a dissipative particle dynamics (DPD) method. Unlike
previous works, the filament is free to rotate and the tension along the filament is determined by the
local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes
analysis. The results show that the filament displays an instability induced by negative tension, which is
analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil
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transitions are observed above the threshold of the buckling instability point. Furthermore, both
temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and
nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being
excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation
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1 Introduction

Bio-polymers, such as F-actin, protein fibers, DNA, and micro-
tubules are all semiflexible elastic filaments. There are two unique
characteristic properties distinguishing them from most of the
other natural and synthetic polymers: they posess a certain
stiffness that energetically suppresses bending, and they are to
a high degree inextensible, ie., their backbones cannot be
stretched or compressed too much. The cytoskeletons of cells
and tissues are mostly built by such bio-polymers, thus, study-
ing the dynamics of inextensible elastic filaments subject to
hydrodynamic forces can be a first step towards understanding
the cytoskeleton networks and tissue motions. Previous works
focused mainly on the stretching dynamics of filaments with
tension applied lengthwise,”® both with and without hydro-
dynamics. However, recent works on the dynamics of elastic
filaments subject to hydrodynamic forces has revealed complex
nonlinear dynamical behavior both in simple shear flows'*™"*
and in the neighborhood of stagnation-point of stretching
flows.®'®!” Specifically, the negative tension induced along
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the filament by simple hydrodynamic forces above some critical
value can lead to buckling known as “stretch-coil” instability.'®*5*°
Hence, it is very important to fully understand the inextensible
elastic filament dynamics for cell mechanics.>”

Suspended in stretching flow, these filaments respond as
mesoscopic entities (~pm), and hence the forces on them,
Brownian, hydrodynamic and elastic, are of the same order.
This, in turn, implies the importance of thermal fluctuations so
that the Brownian forces cannot be neglected. However, to the
best of our knowledge, only a few papers have addressed the
thermal fluctuation effects.’®"**"*> Moreover, nonlinear response
due to the thermal noise has become a central topic in studies
of various dynamical systems. For example, as was shown
recently, thermal noise is greatly amplified in a dynamical
system due to the interaction between stochasticity and non-
linearity near bifurcation points,>?” ie., low dimensional
models with a small number of modes are sufficient to capture
the physics in these complex systems only up to the bifurcation
points, after which, higher modes will make significant contribu-
tions to the full dynamics.

The objective of the current work is to study the role of thermal
fluctuations on the deformation of single linear filament subject
to stretching and compression near a stagnation-point within a
viscous flow. The filaments are represented by two models. The
first is the inextensible elastic filament described as a continuous
curve for which the solvent flow acts through the anisotropic
viscous resistance and thermal noise, and the dynamics of the
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inextensible filament is governed by Langevin type stochastic
partial differential equations (SPDEs).'>*®* The second is a
dissipative particle dynamics (DPD) bead-spring chain model
immersed in a solvent of DPD particles subject to the stagnation-
point flow. Details about these two models are given in Section 2.
These two models are then simulated by obtaining numerical
solutions to the governing SPDEs and DPD equations, respec-
tively (see Section 3). A reader who is not interested in technical
details can skip directly to Section 4, where the main numerical
results are obtained from each model. We use normal mode
analysis to identify the stretch-coil transition and amplification
of thermal noise during filament dynamics. These physical
phenomena can also analyzed with proper orthogonal decom-
position (POD) analysis, which is included in the Appendix.
Finally, a short conclusion about the limitation of the current
models and further work are included in Section 5.

2 Model description

In this section, we present models for continuum inextensible
elastic filaments and for bead-spring chains in stagnation-
point flow.

2.1 Models of linear fibers

Most of the bio-polymers are generally modeled as inextensible
elastic filaments whose deformations are dominated by elastic
bending resistance. This contrasts with other long flexible mole-
cules, which have little bending resistance, and are generally
modelled as freely-jointed chains.""*'* Two linear inextensible
elastic filament models are simulated in our current work: a
continuous elastic filament*>*° and a bead-spring chain.

The energy functional for a continuous filament, constrained
to be inextensible, is expressible as a line integral along its
contour, 0 < s < L, as follows:

1 L/2 ) 5
zz=7J dsQﬂK@)fxw 7A6X8JT>, (1)
2) 1p

where 0 and x = 0,0(s) are the tangent angle and the curvature at
arc length s as shown in Fig. 1 (upper), respectively, and x, is
zero for a rigid rod filament. Bending resistance is character-
ized by the flexural rigidity, which in the theory of elastic beams
is given by A = GI, with a material modulus G and second

ny

Fig. 1 Sketches of (upper) continuous filament with geometric parameter
definitions and (lower) bead-spring chain model.
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moment of cross-section area 1.>" By definition a filament is very
thin, and filament theory is applied to entities where the cross-
section dimensions are not easily determined. Thus, A is the
preferred elastic parameter to characterize the bending elasticity.
The second term of the integrand introduces the Lagrange
multiplier A(s) to impose the local constraint of inextensibility
by the requirement that the tangent vector O;r be of constant
magnitude along the entire filament contour length. Division
of eqn (1) by kgT and with all lengths scaled by L yield the
dimensionless total filament elastic energy E/kgT relative to the
energy imposed on it by the thermal fluctuations. Within the
integral, the dimensionless coefficient of the local elastic term
becomes f = A/(kgTL), a measure of the local bending moment
M(s) = A(k(s) — ko) relative to the moment imposed by the
thermal transverse load. At the mesoscopic dimensions, where
thermal fluctuations are important, an alternative measure of
bending resistance is the persistence length /p related to f by

A p(d-1)

ﬁ:kBTL_ 2L )

where d is the dimension of the deformation space. A Langevin
type equation models the motion of an elastic inextensible
filament immersed in a continuous Newtonian solvent. The
neutrally buoyant filament, of radius a ~ O (um), a/L « 1,
experiences hydrodynamic resistance governed by the Stokes
equation, which exceeds inertia by several orders of magnitude;
hence, inertial forces can be safely neglected. Also, the disturbance
of the flow field by the filament motion is absorbed into the
Brownian force effects. Thus, the mesoscopic level equation of
motion reduces to a balance between three forces: the Brow-
nian force (~kgT/L), the hydrodynamic force (~ péL?) and the
elastic bending force (~A/L?). The motion generated by these
forces must satisfy the local inextensibility of the filament,
which requires the magnitude of its tangent vector to be
constrained locally to be |dr/ds| = 1 along its contour; the latter
condition yields the line tension generated by the Lagrange
multiplier. Finally, the governing equation is written as the sum
of the deterministic forces balanced by the fluctuating stochastic
driving force:

nD[Oxr —u(r)] + (Ag;:: + QV(A(S)QXI‘)) = fstocn (s, 1), (3)

where D is the dimensionless anisotropic drag tensor,
1
D=1- E&r ® O, and 5 = (2m)u/In(L/a) is the effective viscosity

derived from the known Stokes resistance for a rigid rod of
radius a. The latter is usually approximated by rough estimates,
but the inaccuracy is tolerable since it appears only in the
logarithm. This form of the hydrodynamic resistance is accurate
provided the filament remains nearly straight, but as it departs
from a linear configuration accuracy is lost. Also, the configu-
ration of a compliant filament may depart so far from straight-
ness as to induce significant hydrodynamic interactions between
its parts. These restrictions are avoided for the DPD model since
the DPD solvent accounts implicitly for hydrodynamic effects.
The tensor Lagrange multiplier A(s) is an unknown introduced
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to impose the inextensibility constraint, and is the one-dimensional
analog of the pressure Lagrange-multiplier employed to impose
incompressibility on a continuum velocity field. The Langevin
equation is scaled with the contour length L, the hydrodynamic
time ¢ ' and the characteristic Brownian force kg7/L to yield the
dimensionless equation,

D! o*r
8,r—F~r:T(—ﬁ@—

av(A(S)asr) + fstoch (Su l))a (4)
where I is the velocity gradient tensor given below. Hence, the
solution of this equation requires, in addition to f, the Peclet
number’> o defined as

73
D(:;1LL7
kgT

(5)

which measures the hydrodynamic forces induced by the
stretching flow relative to the thermal Brownian force. The
dimensionless parameter f measures the elastic bending force
relative to the thermal Brownian force, which is the typical
definition of relative persistence length in polymer science.?®
The ratio o/f = néL*/A measures the relative strengths of the
viscous and elastic forces. Its limiting values (—0, — o0),
respectively, indicate a nearly-rigid rod dominated by bending
elasticity and a flexible string drawn out to align symmetrically
by the dominant hydrodynamic forces about the stagnation
point. However, the latter configuration ignores the effects of
the Brownian fluctuations which induce a coiled configuration,
as will be seen below. The key parameter «/f in our manuscript is
essentially the same as y in Guglielmini et al.,' 4 in Manikantan
et al.®® and X in Kantsler et al.,'® but with different constant pre-
factors. In the limit of vanishing hydrodynamic force (¢« — 0),
the Langevin equation reduces to a linear problem, ie., elastic
bending vibrations forced by Brownian fluctuations. The Brownian
force fsoen(s,t) satisfies the fluctuation-dissipation theorem
as follows:

<fst0ch(srt)> =0
(fstoch($st) ® foroen(s’st)) = 20Dd(s — s")o(t — t')  (6)

Therefore, f,.n represents white-noise excitation and can thus
be expressed in terms of generalized derivatives of the multi-
dimensional standard Wiener process,

*W(s, 1)

fsloch = mCW (7)

Here, C is a matrix satisfying CC" = D and according to,*
2
CZI‘l‘ (g_ 1>3.cl‘®3sl'-

The bead-spring chain model used in the particle-based
simulations, as shown in Fig. 1 (lower), is designed to mimic
the continuous filament. The discrete elastic energy Ej is a sum
of angle-dependent bending energies and stretching energies
for every consecutive pair of bonds,

Eps = Z%ka(O — 00)*+ Z%ks(b —by)?, (8)
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where k, and ks are the elastic constants for bending and
stretching, respectively. The deformation measures between
consecutive bonds 6 — 6, and b — by, for bending and stretching
respectively, are taken relative to their equilibrium reference
values 0, by. In this work, 0, is taken to be © along the entire
contour, which sets the reference state to be a straight rod with
b, determined by the number of bonds. The constraint of
inextensibility is approximated locally with very stiff connectors
(large k) between every pair of consecutive beads. Another
equation incorporates the bending constant k, into the persis-
tence length I, analogously to eqn (2) of the continuous
filament case as

 kaby
 kgT’

Ip ©)
Comparison of the two definitions of the persistence lengths,
eqn (2) and (9), suggests that the filament and the bead-spring
chain models are elastically equivalent provided k,b, = 24/(d — 1).
In addition, the bond spring constant ks needs to be large enough
to approximate the local constraints of inextensibility. This in
turn limits the simulation time steps to very small values.

2.2 Stagnation-point flow

The stagnation-point flow has long been realized in the four-role-
mill apparatus of Lagnado et al. and Yang et al., respectively,*>°
and has been employed in the study of drops and other objects
of macroscopic dimensions.*® The stagnation-point flow can be
realized in the cross micro-channel arrangement of Kantsler &
Goldstein® to observe the response of mesoscopic particles
such as actin molecules in the vicinity of the stagnation point.
The micro-channel system requires smaller sample volumes,
and hence appears to be more suitable for the observation of
macromolecules, cells, etc. In the vicinity of the stagnation
point the velocity field v(r) is spatially homogeneous, and can
be written as,

v(r)=F~r7F:é{(il (1)}7V:é\/(x2+y2), (10)

with V the velocity magnitude, ¢ the shear rate and I the velocity
field matrix. For particle-based simulation methods such as
DPD, simple flows (i.e., shear flows) are commonly generated
by imposing a constant driving force (Poiseuille flow), equivalent
to a pressure gradient, or a driving velocity on the boundary shear
planes (Couette flow). However, with a particle based method it
is not trivial to implement the stagnation-point flow together
with periodic boundary conditions. Recently, Pan et al®’
devised a periodic uniaxial stretching flow for DPD simulations
in which a smaller box is placed inside an outer larger box.
Periodic boundary conditions are applied on the surfaces of the
latter, while the flow is driven by a distribution of velocities on
opposing vertical surfaces of the inner box. By reversal of the
direction of the driving velocities stretching/compressing can
be imposed along the x/y-axes. Known analytic stretching flows
are defined on infinite domains, and hence the box-inside-a-
box is a convenient way to have fully periodic conditions with
simplicity of implementation. However, the outer box size should

This journal is © The Royal Society of Chemistry 2015
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be large enough to ensure minimal effect on the stagnation-point
flow. Our experience is that the large size and slow convergence to
the steady state makes the box-in-a-box scheme computationally
expensive. Furthermore, the stagnation stretch rate cannot be

Fig. 2 (left) Streamlines derived from DPD simulations of a Newtonian
fluid undergoing stagnation-point flow in the periodic box; (right) velo-
cities along the X(red)- and the Y(blue)-axis. The strain rate is uniform
(linear velocities) for X,Y < +4.

N

Fig. 3 Instantaneous streamlines and velocity vectors showing the dis-
turbance of the stagnation-point flow caused by the bead-spring chain
constrained to deform in the plane (see online video, ESI+).
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specified, and has to be determined by trial. We have developed a
driving-force field to yield a stagnation-point flow in a DPD compu-
tational box with periodic boundary conditions. The new scheme
takes advantage of the well-known fact that the Navier-Stokes
equation is satisfied by a potential flow. The x-y plane of the box
is a periodic square in a lattice of vortices. It is bounded by
streamlines, and contains four counter-rotating vortices located at
the centers of each quadrant. In potential flow, Bernoulli’s equation
is H=1/2pv* + P + py = constant. The velocity field can be thought of
as being driven by the body force per unit mass V(x + P/p), which by
Bernoulli’s equation is Vv*. The derivation of this driving force will
be given in a forthcoming publication, where it will be shown that
use of this driving force yields accurate simulations. Furthermore,
excellent economy is achieved due to rapid convergence from a
startup at rest to the steady state. The simulated streamline and
pressure pattern is shown in Fig. 2 (left), and the velocity-vector
pattern in the vicinity of the center shows it to be a stagnation point;
see the velocities along the centerlines x = 0, y = 0 plotted in Fig. 2
(right). In the DPD simulation, a single bead-spring filament model
is released with its center of mass at the stagnation-point (center
of simulation box) of the flow shown in Fig. 2 (left). No constraints
are imposed on the motion of fiber near the stagnation-point, while
Guglielmini et al' use Brownian dynamics to study an elastic
filament tethered to the stagnation point. The kinematics of the
fiber are then recorded as functions of time, as shown in Fig. 3 as
well as online video. Because of the accurate symmetry of the analytic
stagnation-point flow driving the filament motion, the dwell time of
the filament in the region of uniform strain rate was always sufficient
to observe its complete reorientation along the stretching axis.

3 Numerical methods

With sufficient depth, the Yang et al.’s four-role-mill apparatus
should allow a suspended object to move freely in any direction,
and therefore it is appropriate to simulate the resulting distur-
bance flow as fully three-dimensional. However, in the crossed-
channel configuration, the classical stagnation-point flow is
realized only in the mid-vertical plane, and the small gap will
tend to constrain a suspended object to move within that plane.
This is the motivation for the 2D simulations described below.

3.1 Numerical methods for governing SPDEs

The numerical approach taken here was inspired by Chorin’s
method for incompressible Navier-Stokes equation.*® First, we
introduce the auxiliary systems for the position r(s,t) along the
fiber, as follows

-1 4
or—rI 1= DT(—ﬁQ — 95(A(5)05r) + ft0en (s, t))

Os*
2
0(04) N or 10
ot s (11)
A(s=0)=A(s=1)=0
*r Or
w(s—o,s— )—as3(9: ,s=1)=0
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We shall call ¢ the artificial extensibility, and ¢ in the second
equation is an auxiliary variable whose role is analogous to that
of time in extensible fiber problem. Numerically, we choose
0 ~ O(At), and our auxiliary system indeed converges to inexten-
sible filament system as At goes to zero.

The auxiliary system (11) can be used with various difference
schemes. Here, considering the stiffness introduced by the
4
57
difference in space and a stiffly-stable scheme in time. To this
end, we consider N, + 1 discrete points in time ¢ = iAt with
i €40,1,2,...,N}, and the arc length in space is discretized uniformly
by N; + 1 nodes s = kAs, k € 0,1,2,...,Ns; and As = 1/N;. A staggered
grid is used to calculate r and A for stability reasons, i.e., the
displacements r are calculated at the center points of each
interval with total N points, while the line tensions are updated
every timestep on the boundaries of each interval with total
N; + 1 points. Ghost points are used to approximate the high-
order derivatives near the boundaries. We approximate the
stochastic force as piece-wise constant on distinct time and
space intervals, As and A¢, i.e., the discrete stochastic forces are
Gaussian random numbers and are uniquely characterized by

zero mean value and the covariance matrix:

i [ 200
stoch k ~ MCkN(Q 1) (12)

with .47(0,1) denoting the normalized Gaussian distribution.
Finally, the discretized equations can be written using a third-
order stiffly stable scheme® as

elastic term the SPDEs are discretized by central finite

i 18 i 9 i 2 i— 6 i i

rk+1 - ﬁrk — Hrk s Hr/c 2+ HAZ(F,:” + fstalch k) 13)
_ 18 . 9 2 . 6 At _,
i1 18 ;9 g L i 2 i

Ak - llA/c llAk + llAk + 11 5Gl‘

where F and G are numerical discretizations of the terms

-1
Ir+ D7<— % - 8S(A(s)6sr)> and (1 — (9,r)*), respectively,
with central differences. At each time step, these coupled two
equations are iteratively solved by fixed-point iteration. In
eqn (13), the stochastic terms are treated in the Ito sense. We
then sample the stochastic trajactories with the Monte Carlo
method. High order discretization formulas are used both in
time and space, nevertheless, we can only achieve first-order
convergence in the weak sense because of the Wiener process,
as shown in Fig. 4.

3.2 Dissipative particle dynamics simulation

We then study the inextensible fiber dynamics subject to
stagnation-point flow by employing DPD simulations. DPD is
a mesoscale method for studying coarse-grained models of soft
matter and complex fluid systems over relatively long length
and time scales, see ref. 40-42. In DPD, the particles interact via
pairwise additive forces, consisting (in the basic form) of three
components: (i) a conservative force f<; (ii) a dissipative force,
£"; and (iii) a random force, f*. Hence, the total force on particle
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Fig. 4 Numerical (weak) convergence of the solution of eqn (4) as
measured by the mean square error (MSE) of filament end-to-end distance
as a function of time step At. The exact solutions are computed with
At =107°.

iisgiven by f, = 3 <f§ +17 + ff}), where the sum acts over all
i#]

particles within a cut-off radius r.. Specifically, in our simula-

tions we have

f; = ;a,](u(zy)r,] yar® (rip) (7 - Vi) By + acu(r,])mrlj (14)
where g;; is a maximum repulsion between particles i and j. We
set a;; = a = 25.0 for both solvent and filaments particles in our
simulations. r; is the distance with the corresponding unit
vector iy, V; is the difference between the two velocities, (; is a
Gaussian random number with zero mean and unit variance,
and y and ¢ are parameters coupled by ¢” = 2ykgT.** Typically,
the weighting functions w(r;) are given by

rij
-4 rij <'e

o(ry) = e : (15)

0 T > T

The filaments are represented as bead-spring chains with N =
32 segments, with additional bond and angle forces (—VE,)
derived from eqn (8). The average particle number density of the
DPD solvent is p = 3.0r. % and the temperature is set at k5T = 1.0.
The simulations are performed using a modified version of the
DPD code based on the open source code LAMMPS, see ref. 44.
Time integration of the equation of motion is obtained by a
modified velocity-Verlert algorithm, first proposed by,*" with time
step At = 0.001 (in DPD time units).

4 Results and discussion

In order to obtain a quantitative understanding of the dynamics
of a fiber undergoing large distortions near the stagnation-
point of flow, we interpret the solutions of system (eqn (11)) in
terms of the shape angle 6. Previous studies'® have employed the
eigen-modes analysis of the familar transverse displacement of
elastic beam theory. However, such displacements become
increasingly difficult to interpret for fiber distorted far beyond
straight. Thus, normal modes analysis*®> of angle 0 is used to
study the fiber deformation during its motion. The bending

This journal is © The Royal Society of Chemistry 2015
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moment M due to the transverse load along the fiber is
A(x(s)—kKo), and the differential of the elastic energy at an
arbitrary point s along the fiber is dE = A(k(s) — x,)*ds. Hence,
the shape angle can be expressed as 0 = [(1/MdE). For a nearly
straight fiber aligned with the stretching flow the bending
load will be mainly that imposed by the thermal fluctuations.
Thus, M will be 0(ksT) while dE is (O(A/L), and hence 0 ~ O(f).
However, as the fiber becomes highly distorted the hydro-
dynamic drag will also contribute to M, and we then must
include o in the functional dependence of 6.

4.1 Normal modes analysis

We can express the shape 0(s), as defined in Fig. 1, as a
superposition of normal “modes”,

0(s, 1) = i uq (1), (s) (16)
q=0

where u, and ¢, are, respectively, the temporal and spatial
normal modes, where ¢,(s) are complete set of orthogonal basis
functions. The choice of the eigen-functions of the biharmonic
operator with natural boundary conditions (0,0(—L/2) = 0,0(L/2) =
0,050(—L/2) = 040(L/2) = 0) as appropriate normal modes is
motivated by the term with this highest spatial derivative in the
equation of motion. Kantsler et al.*® represented the displace-
ments in terms of normal modes derived from the full elastic-
beam equation in the limit of small displacements. It is not
clear if such modes are appropriate for large distortions. An
alternative set of modes is numerically derived in the Appendix
by a proper orthogonal decompostion (POD). Thus, the normal
modes are determined by

d)ssss - Aq d) = 01

1
where k, is the g-th root of ~cos(x)(e* +e™*) — 1 =0 and the
. . o a2 .
eigen functions ¢, of this biharmonic operator are of the form,

Ag = kql(rAL)", (17)

¢4(s) = Asink,s + Bsinh k;s + Dcoskgs + Ecoshkgs  (18)

The coefficients are determined by the boundary conditions,
and the first five normal modes are shown in Fig. 5.

Fig. 5 First five normal modes (eigen functions) for the biharmonic operator
with boundary conditions (eqn 18), cycle, cross, rectangle, diamond and
triangle symbols represent Oth, 1st, 2nd, 3rd and 4th mode, respectively.
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Here, we note that the eigen-functions of the full operator
o'

ﬂw + 05((A(s))0sr), which correspond to the eigen-modes of

fiber dynamics, cannot be obtained analytically since the tension
A(s) is unknown in general. For a nearly straight fiber aligned
along the stretching or compression axis with small distortions,
the tension A(s) can be obtained analytically. In such case,
the eigen-functions for the displacement are also obtained
analytically by Kantsler et al.'® However, here, we study the
fiber deformation during an entire cycle of fiber rotating from
aligned along compression axis to stretching axis. The eigen-
modes for angle 0 instead of displacement are simply chosen as
the eigen-functions of the biharmonic operator with natural
boundary conditions. We only include the linear part of the
deterministic operator, thus, these eigen-modes shown here
do not correspond to real dynamic modes. We projected the
full modes onto these linear normal modes for both geometric
and computational reasons, and these linear normal modes are
appropriate to study fiber deformations, because they form a
complete set. Moreover, the tension A(s) along the fiber changes
sign from negative to positive during a full rotation, and hence
the nonlinear term contribution cancels out (though not per-
fectly to zero) in an average sense. This is one of the main
reasons that we chose the linear eigen-modes in addition to
simplifying the computation. The real dynamic modes can be
obtained numerically via proper orthogonal decomposition
(POD) over a certain time window, i.e., before significant buckling
and reorientation, the POD modes correspond to the analytical
eigen-modes obtained by Kantsler et al.'® A simple comparison
between POD and normal modes is included in the Appendix. The
spatial normal modes of eqn (17) shown in Fig. 4 are appropriate
to describe the deformed fiber by means of the shape angle 6 for
all levels of distortion. The linearity of the operator of eqn (17)
guarantees that the spatial modes will remain unchanged for
all levels of non-linearity. For a simple scenario, if there are
no interactions or correlations between each mode dynamics,
i.e., the mode dynamics is all decoupled, the bending energy
can be represented as quadratic summation of the normal modes

1 00
amplitudes, ie. U= 74 > k42u,*. Then, each quadratic term
q=1

contributes an 1/2kgT from the equipartition theorem, thus, we
kgT 1 - . .
have uq2 :BTﬁ. However, it is not true for inextensible
q
filament dynamics here due to the nonlinear interactions
between different modes, which arise from the local inextensible

constraint (|dr/ds| = 1).

4.2 Numerical results

First, we show that the spatial modes of the filament motion
can be separated into symmetric (even) and antisymmetric
(odd) relative to the mass center depending on whether under
the transformation r— > —r they are even or odd functions.
Our results show that for o/f < 1 odd modes are suppressed,
which indicates fore-aft symmetry (Fig. 6(a)). As we increase a/f,
the first mode is excited (Fig. 6(b)), further, for o/f > 1, odd
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Fig. 6 First four normal modal energies as functions of dimensionless
time at o/ = 1.0, 10.0 and 100.0, from top to bottom, respectively. Even
and odd modes are represented as: by red and green 2nd and 4th, black
and blue the 1st and 3rd, respectively. All of the data is derived from normal
mode analysis of the numerical solution of egn (4).

0.04

modes are excited, which implies that symmetry is broken as in
Fig. 6(c). The even/odd modes behaviour is mainly because of the
anti-symmetry of the eigen-functions of the linear biharmonic
operator with natural boundary conditions. The eigen-functions
in eqn (18) only keep the first and last two terms for even and
odd modes, respectively. Essentially, these phenomena come
from the geometric constraints. Since our decomposition is done
on the angle, the 0th mode corresponds to the pure rotation,
which has the most dominant energy.

An alternative way to illustrate the amplitude data is dis-
played in Fig. 7, where the time averaged values of u,” are
plotted against mode number k&, display a sawtooth-trend due
to the suppression of odd modes (two to three orders smaller
than the even modes) and follow the equi-partition theorem for
small o/ < 1, ie., the modal energy exhibits kq_2 decay, as
indicated by the dashed line with slope = 2.0. However, the
modal energy decay is much slower for large o/f > 1, which is
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Fig. 7 Time average normal modes energy as functions of mode number
kg, with a/f = 100.0 (red), 10.0 (blue), 1.0 (green). Data represented by solid
symobls are derived from the numerical solution of continuum SPDEs,
while data represented by open symbols are obtained from DPD simula-
tions. The upper and lower dashed lines are reference lines for linear and
quadratic decay, respectively.

indicated by a dashed line with slope = 1.0, and the sawtooth
behavior disappears due to the excitation of odd modes (com-
pared to even modes).

To further investigate the modal dynamics in time, we show
the probability distribution functions (PDFs) of ou, defined as

Sug(t) = uglt) — (ug(0) (19)

in Fig. 8, compared to a normal distribution fitting. The
corresponding variances increase continuously as we increase

1 . R . .
a/—ﬂ, see inset in Fig. 9. There is a three orders increase of
variance within our parameters range, which implies that a
significant amplification of thermal fluctuations is taking
place. Another interesting physical property for studying modal
dynamics is the autocorrelation function, which is defined in
the usual way as,

Cylt) = (uglto + Oouy(to))- (20)

A useful observable to get insight into the stochastic behavior
in time is the power spectral density (PSD) P(f), which is the

PDF

-0.02 0 0.02

Fig. 8 PDF of du; with o/ = 10.0. (inset) PDF variance of du; as a function
of a/p.
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Fig. 9 Power spectral density function as a function of dimensionless
frequency scaled with éf/(x/)Y? and (inset) original data, (from top to
bottom)red, blue and green lines represent «/f = 100.0, «/f = 10.0 and
af/ff = 1.0, respectively, with o = 10.0. Data of solid and dashed lines are
from solution of SPDEs and DPD simulations, respectively.

Fourier transform of the autocorrelation function C,(t), ie.,
P(f): =FFTC,(t). In Fig. 9, we show the PSD of the first mode 1,
at several values of o/f. For large frequencies (short time
regime), the PSDs obey the same power law P(f) oc (§f)'. We
note that our results are from 2D simulation, thus the slopes
here are different from previous 3D studies.'® All of these PSD
data with different parameters collapse onto a single line with
a simple rescaling f ~ f/(a/f)">. However, at small frequencies
(long time regime), there is a pronounced increase in PSD with
larger o/f, indicating stronger long-time correlations due to the
interaction between nonlinearity and stochasticity.

To further quantify the Euler-buckling like instability and the
transition point, we define &* motivated by a similar expression
derived empirically as a wrinkling criterion for vesicle membranes
in previous studies***

12 12
k= Zq2|“q|2/2‘”f]|2 (21)
q=2 q=2

The results both from the continuous filament model and the
bead-spring chain model show that a transition occurs with o/
increasing to (1) as in Fig. 10. This interesting transition
can also be identified by the average end-to-end distance Ry
of the fiber as shown in Fig. 11. This is the Euler-buckling
like transition observed in previous experimental studies."® The
departure in the flexible limit o/f — oo appears to be due to the
use of steady flow Stokes resistance in continuous filament
model eqn (3), which is valid only for rigid rods. In the coil
regime, the hydrodynamic resistance is underestimated in the
continuum model. Thus, the results from the continuum
model will be closer to the DPD results if we increase the
hydrodynamic resistance coefficient 5 to 21, while keeping «/f8
the same. These results and sensitivities are shown in Fig. 10
and 11. Another difference between the two models originate
from the hydrodynamics near the filament and the disturbance
to the steady flow field by the filament deforming dynamics.
The DPD model captures the instantaneous hydrodynamic
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107" 10° 10" 10°

Fig. 10 Critical mode number k* for buckling instability as a function of o/f
determined from the planar motion of the Langevin filament and the 2D motion
of the DPD bead-spring chain with o = 10.0. Data for the solid blue line and
open red symbols are from numerical solution of SPDEs and DPD simulations,
respectively. The green symbols represent the variation of k* as the hydro-
dynamic resistance coefficients in the continuum models are changed from
1 to 25 (lower symbol) and 0.51 (upper symbol) at constant «/p.

0.5¢ —s coil
q O
s rod «—— I
=
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Fig. 11 Effective compression 1-R//L as a function of «/f determined
from the planar motion of the Langevin filament (solid blue line) and the 2D
motion of the DPD bead-spring chain (open red symbols) with « = 10.0.
The green symbols represent the variation of R¢/L as the hydrodynamic
resistance coefficients in the continuum model are changed from 5 to 2y
(upper symbol) and 0.5y (lower symbol) at constant o/p.

interactions of the fluctuating flow field shown in Fig. 3, and
a more detailed video included as ESIL.t

Throughout the paper, «/f is used to measure the system,
which is also adopted by other deterministic models,'® i.e., models
that do not include thermal fluctuations. However, a short discus-
sion about these dimensionless parameters is needed for stochastic

models, when the thermal energy dominates. We note that a = ét
'i

L;
has the form of a Weissenberg number, with = Z—T corre-
B

sponding to the time the center of mass of the fiber takes to
diffuse its own contour length, which is independent of the
persistence length /. Thus, it seems more appropriate to consider
the fiber relaxation time as the characteristic time, since we
focus on fiber deformation dynamics. The characteristic relaxa-
tion time is widely used to study flexible polymer extension with
hydrodynamic effects. For weak bending resistance, we can
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renormalize the semiflexible fiber into freely-jointed chain model
with effective Kuhn length /» and number of segments L/lp.
Motivated by the Zimm model for flexible polymers,*® we then
define the relaxation time to be

L v 3
O wpe

ksT kT

TR X

where v is the Flory index and we take v = 0.5 for theta solvent in
our simulation. Thus, we end up with another Weissenberg
number W = «*? and its limiting value indicate for: (W — o0)a
nearly-rigid rod dominated by bending elasticity with negligible
thermal fluctuations, while for (W — 0) a flexible string domi-
nated by Brownian forces. However, W is only suitable for fiber
under positive tension (extension relaxation). The effects of W on
fiber dynamics under negative tension are difficult to understand,
hence, a new dimensionless number is required to capture
accurately the physics of fiber dynamics under negative tension
and thermal fluctuations.

5 Summary and discussion

We considered here the dynamic response of a single inexten-
sible, elastic filament subject to stretching/compression in a
stagnation-point flow. We developed two different models, the
first based on a stochastic PDE treating the filament as con-
tinuum, and the second based on dissipative particle dynamics
(DPD) treating the filament as bead-spring chain. In the second
model, the two-dimensional stagnation-point flow is achieved
by driving the particles with a body force derived from the
pressure gradient of a potential flow in a lattice of vortices. In
both models, the elastic properties are matched and the fila-
ment motion is constrained to the plane. In the DPD simula-
tions the solvent is simulated explicitly and the corresponding
particles are free to move in three-dimensions. On the other
hand, in the continuum model, the solvent is simulated
implicitly with the friction acting on the filament derived from
the Stokes equation for a rigid rod subject to three-dimensional
flow. The latter is subject to uncertainties, which we investigate
by varying the magnitude of the friction coefficient by £50%. In
particular, we were interested in investigating the effect of
thermal fluctuations on the dynamic response of the filament
and the presence of a possible stretch-coil instability from two
different modeling perspectives. We found that the filament
displays a buckling instability induced by tension, analogous
to the Euler beam, at Weissenberg number of order one. Above
this value, both the temporal and spatial thermal noise are
amplified due to interaction between the thermal fluctuations
and the nonlinear filament dynamics. Normal mode analysis
of the filament motion obtained by both models shows the
response to be composed of the same modes, but the transition
from nearly straight rods to loose coils suggests that constant
resistance coefficients may overestimate the amplitude of the
filament response. Although we have dealt only with the single
continuous filament dynamics in an undisturbed stretching
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flow, the framework employed and numerical schemes can be
applied to concentrated filament solutions and filament net-
works with large disturbances of the flow field, where a Stokes or
a Navier-Stokes solver should be employed together with our
current frameworks.”” Comparing with previous studies,” we
considered the stochastic Brownian force in the governing
equation of fiber dynamics. Without thermal fluctuations (or
temperature), the fiber only exhibits a single mode subjected to
specific tension. However, a configuration is a summation of each
normal mode with different modal energy in the finite tempera-
ture case, where the modal energy follows or deviates from the
equi-partition theorem before and after the bifurcation point,
respectively. Indeed, the bifurcation point (o/f ~ (1)) is inde-
pendent of the temperature, but the fiber dynamics is highly
dependent on the temperature. Before the bifurcation point, the
dynamics depends linearly on temperature since the modal
energies can be well separated and scaled by thermal energy.
However, the nonlinear dependence of fiber dynamics on ther-
mal fluctuations is extremely complicated after the bifurcation
point and deserves further studies.

Appendix: proper orthogonal
decomposition analysis

Proper orthogonal decomposition (POD) is a spectral analysis
tool often employed for data compression and low-dimensional
modeling, which is also known as principal component analysis
(PCA), singular value decomposition (SVD). Here, POD decom-
poses the time-space fiber configuration 6(t,s) into an expansion
of orthogonal temporal and spatial modes, i.e.,

Npop

> by(s)ay() (23)

q=1

0(t,s) =

To compute the space-time-POD modes, a temporal auto-
correlation covariance matrix C is constructed from the inner
product of 0(z',s) and 0(z”,s) as

Cy = [0(z',8)0(c/,8)ds, 1,7 =1, 2,..,Npop (24)

The temporal modes a,(t) are the eigenvectors of C, and the
spatial modes ¢,(s) are computed via orthogonality relations, i.e.,

Pyls) = [a,()0(z,s)dz (25)

In a time average sense, the real dynamic modes can be obtained
numerically via proper orthogonal decomposition over a certain
time window. For example, we chose the time window to be before
significant buckling and reorientation, and obtain the POD
modes. They correspond to the analytical eigen-modes obtained
by Kantsler et al,"® as can be seen in Fig. 12.

The eigenvalues /; of the autocorrelation matrix C (with
M > Ay > .0 > /leD) represent the energy level associated
with the POD mode g, as shown in Fig. 13.

As expected, we observe a typical power-law decay of high-
order POD modes in all simulations. For «/f < 1, the power-law
decay corresponds to a thermal white-noise energy spectrum
indicated by black dashed line (slope = 2.0) in the plots, and
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Fig. 12 First four eigen-modes for the full biharmonic operator with
natural boundary conditions; the dash lines are the analytical results
obtained by Kantsler et al.*® with known tension, and the symbols repre-

sent the eigen-modes obtained with POD within a short time period for
fiber aligned along the stretching axis.

10 10’ 10
q

Fig. 13 POD modes energy as functions of mode number g, with «/f =
100.0 (red), 10.0 (blue), 1.0 (green).

only small amount of POD modes are enough to characterize
the fiber dynamics. However, the power-law decay becomes
slower as we increase o/f}, which shows that the fiber dynamics
is accompanied by the excitement of high-order deformation
modes, and hence more degrees of freedoms are needed to
describe such motions. In general, POD and normal modes
analysis reveal the same physics as described above.
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