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end, we consider a series of one-dimensional prototype SPDEs, whose solution can be
expressed analytically, and which are associated with both linear (advection equation)
and nonlinear (Burgers equation) problems with excitations that lead to unimodal and
strongly bi-modal distributions. We also propose a hybrid approach to tackle the singular
limit of the DO equations for the case of deterministic initial conditions. The results reveal
that the DO method converges exponentially fast with respect to the number of modes (for
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High dimensions the problems considered) giving same levels of computational accuracy comparable with

Stochastic collocation the PC method but (in many cases) with substantially smaller computational cost com-

Low-dimensionality pared to stochastic collocation, especially when the involved parametric space is high-
dimensional.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there has been a growing interest in quantifying parametric uncertainty in mathematical physics problems
through the probabilistic framework. Such problems are often described by stochastic partial differential equations (SPDEs),
and they arise in fluid mechanics, solid mechanics, wave propagation through random media [2-4], random vibrations [5-7],
etc. The source of stochasticity in all the above cases includes uncertainty in physical parameters, initial and/or boundary
conditions, random excitations, etc. All these stochastic elements may be modeled as random processes or random variables.
Several methods have been developed to study SPDEs, including the Monte Carlo (MC) method and its variants and, more
recently, Polynomial Chaos (PC) and its variants. One of the often neglected issue in developing new numerical methods
is the study of the convergence properties of the method, which is especially important for stochastic solutions that lack reg-
ularity and they are typically high-dimensional.

The Polynomial Chaos (PC) method was developed in [8] in the context of the Wiener-Hermite polynomial chaos expan-
sion. The stochastic processes are represented by a series of Hermite polynomials in terms of random variables. A Galerkin
projection of the governing equations to the low-dimensional subspace spanned by Hermite polynomials yields a set of
deterministic equations. PC has been applied to many problems including structural mechanics [9-11], fluid mechanics
[12-16], etc. The generalized polynomial chaos developed by [14,17] employ non-Hermite polynomials to improve efficiency
for a wider class of nonlinear problems. A computationally efficient version of PC is the probabilistic collocation method
(PCM; also referred to as stochastic collocation), which exhibits fast convergence rates with increasing order of the
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expansions, provided that solutions are sufficiently smooth in the parametric space [18-20]. In particular, the multi-element
PCM (ME-PCM) is very effective for problems with parametric discontinuities [20].

A new approach, called Dynamically Orthogonal (DO) method, was developed in [1]; the idea is to represent the solution
in a more general expansion, i.e.,

N
u(x,t; ) = U(x, t) + > _Yi(t; 0)ui(x, 1),

i=1
where Y;(t; ) are stochastic processes, u;(x,t) orthonormal fields and ui(x, t) is the mean. The time dependence on both the
stochastic coefficients and the basis fields makes the above representation very flexible for the representation of strongly
transient, non-stationary responses. However, this same property makes the representation redundant and the derivation
of well-posed equations for all the quantities involved is not a straightforward problem. In [1] it was illustrated how this
redundancy can be overcome by adopting a natural constraint: the dynamical orthogonality condition. It was shown that using
this condition a set of evolution equations for the Y;(t; @), u;(x, t) and ti(x, t) can be derived. These derived field equations are
consistent with existing methods such as proper orthogonal decomposition method (POD) and PC.

From a computational point of view the evolution of uncertainty using the DO framework is performed by solving a set of
(N + 1) deterministic PDEs together with N (ordinary) stochastic differential equations (SDE). The system of PDEs describes
the evolution of the mean field and the basis elements that define the stochastic subspace where uncertainty ‘lives’. The SDE
on the other hand defines how the stochasticity will be evolved within the reduced-order stochastic subspace. In the limit of
very small uncertainty the DO equations reach a singular limit where the modes evolve independently from the statistics
within the subspace. This limit may create important numerical problems since it involves the calculation of ratios of very
small moment quantities. From a practical point of view the above situation can be very important especially in problems
involving deterministic initial conditions. In such a case (deterministic initial state) another issue rises and this is the initial-
ization of the stochastic subspace (since any initial choice of modes is allowable).

To tackle this issue we develop a hybrid method to overcome this singularity by combining the PC method with the DO
method. Initially, the SPDEs are solved by the PC (e.g. via PCM or ME-PCM), and as the stochasticity develops we switch over
to the DO method. This hybrid approach also gives us a set of modes, which are used to initiate the stochastic subspace. We
consider three one-dimensional SPDEs which are associated with linear (advection equation) and nonlinear (Burgers and dif-
fusion equation). For the advection equation the solution can be expressed analytically. For Burgers equation we consider
two other cases: one has the analytical solution with excitation functions that lead to unimodal and bi-modal distributions
while the other has random forcing. For the diffusion equation we consider the unsteady heat equation with uncertain inputs
in heat conductivity that is multi-dimensional in parametric space. In particular, we examine the convergence of the new
hybrid method and compare its accuracy and the efficiency with the PCM, which is the golden standard in uncertainty quan-
tification at the present time.

The remaining part of the paper is organized as follows. In Section 2 we briefly review the DO representation and the cor-
responding evolution equations. Subsequently, we present the hybrid method of PC and DO. In the following sections, the
hybrid method is applied to two SPDEs. In Section 3, a stochastic advection equation is considered; the exact formulas for
the stochastic coefficients and deterministic basis are given and comparison with PCM is presented. In Section 4, two Burgers
equations are considered. First, the Burgers solution is constructed given the stochastic coefficients and basis and the corre-
sponding exact PDF is derived. Second, the Burgers equation is considered for testing the hybrid method and convergence
with respect to the number of modes. In Section 5, the nonlinear diffusion equation is considered; it is multi-dimensional
in parametric space with no exact solution and the convergence with respect to the number of modes is presented. We con-
clude the paper with a brief summary in Section 6.

2. An overview of the DO equations and a new hybrid DO-PC approach

We consider the following SPDE:

%:y(u(t,x;w)), xeD, weQ (1a)
u(to,x; ) = up(x; ), x€D, weQ (1b)

Blu(t,x;w)] = h(t,x;w), x€dD, weQ,
where ¢ is a differential operator and % is a linear differential operator. D is a bounded domain in #¢ where d = 1,2, or 3.

2.1. Definitions

Let (Q, 7, P) be a probability space, where Q is the sample space, # is the g-algebra of subsets of Q, and P is a probability
measure. For a random field u(x, t; w), w € Q, the expectation operator of u is defined as

u(x, t) = Eu(x, t; w)] = / u(x, t; w)dP(w).
JQ
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The set of all continuous and square integrable random fields, i.e., [, E[u(x, t; ) u(x, t; w)]dx < co, where u(x, t; w)" is the
transpose of u, for all t € T and the bi-linear form of the covariance operator

Cu(n,t:ru)v(-‘s:w) (X’.V) = E[(“(& t; w) - ﬂ(X, t))'(U(X, 3 w) - 7_/(X’ 5))]7 Xxye D’
form a Hilbert space that will be denoted by # [2,21]. For u(x, t; w), v(x,t; w) € #, the spatial inner product is defined as

(-, ), v(-, t;m)) = / u(x, t; ) v(x, t; w)dx.
D
We define the projection operator ®s of a field u(x, t), x € D to an m-dimensional linear subspace S spanned by the orthogonal
basis S = {wi(x,t; w)}I;,x € D as follows:
m
Ds[u(x,t; )] = > (wi(-, t; ), u(-, t; ©))wi(x, t; )

i=1

2.2. DO representation

The DO equations are briefly described in the following subsections; see [1] for more details. Using a time-dependent gen-
eralization of the Karhunen-Loeve (KL) expansion [1], we have that every random field u(x, t; w) € # at a given time ¢t can be
approximated by a finite series of the form

N
U(X, t; C{)) = ﬂ(X, t) + Zyl(tv w)ui(x7 t)v (2)
i=1
where u;(x, t) are the eigenfunctions, and Y;(t; w) are zero-mean stochastic processes whose variance E[Y?(t; w)] is equal to
the corresponding eigenvalue /;(t) of the eigenvalue problem of the Karhunen-Loeve decomposition:

/D Cut.ou.o (X, Y)ui(x, t)dx = J(t)u;(y,t), yeD. 3)

We define the linear subspace Vs = span{u;(x, t)},N:l as the linear space spanned by the N deterministic eigenfields associated
with the N largest eigenvalues. Note that both the stochastic coefficients Y;(t; w) and the orthogonal basis u;(x,t) are time-
dependent (and they are evolving according to the system dynamics) unlike other methods such as the standard PC where
the stochastic coefficients are time-independent. In [22], a similar expansion with time evolving PC basis is presented but the
time-depended basis is obtained according to the PDF of the solution; in DO it is obtained through an evolution equation as
we explain next.

2.3. DO field equations

All quantities u(x,t),u;(x,t),Yi(t;w), i=1,...,N in the representation (2) are time-dependent and hence there exists
some redundancy in the representation. Therefore, additional constraints need to be imposed in order to formulate a well
posed problem for the unknown quantities. As first proposed in [1], a natural constraint to overcome redundancy is that
the evolution of the basis {u;(x, )}, be normal to the space Vs; this can be expressed through the following condition:

ou;(x, t)
ot

TJ_V5<:><

This condition is referred to as the dynamically orthogonal (DO) condition. Note that the DO condition preserves orthonormal-
ity of the basis {u;(x,t)}Y, since

%(ui(-,t),uj(-, t) = <a”(§t t),u,»(-,r)> + <ui(-, t),‘()”fé(; t)> =0, ij=1,...,N.

It is proved in [1] that the DO condition leads to a set of independent and explicit evolution equations for all the unknown
quantities. Next, we state the DO evolution equations without proof:

,uj(x7t)>:0 ij=1,....N. (4)

Theorem 1. Under the assumptions of the DO representation, the original SPDE (1a,1b,1c) is reduced to the following system of
equations

MY Bt o), (5a)
% —< L, to)] - ELuC o), w6 >, i=1,...,N (5b)
N .

3 Crmo 8”15? X _ [IE2ut. )Y, j=1,....N, (5¢)

i=1 Vs
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where  the  projection in  the  orthogonal complement of the linear subspace is defined as
[Ty F(x) = F(x) - Ty, F(x) = F(x) — SN FC), ue(- D)u(-,t) and the covariance of the stochastic coefficients is
Cy,wv; = E[Yi(t; )Y;(t; w)]. The associated boundary conditions have the form

‘%[ﬂ(f; t; w)”:fe(‘)D = E[h(i t? 0))},

Blui(E,1)]|:cop = E[Yj(t; 0)h(E, t; w)]c;'il(t)yj(t)v

and the initial conditions for the DO components are given by

u(x, to) = E[uo(x; w)],
Yi(to; ) = {uo(, @) — u(x, to), (")),
ui(x, to) = vi(x),

foralli=1,...,n, where v;(x) are the eigenfields of the covariance operator Cy.c,)u(.¢,) defined by the following eigenvalue problem
for t = to:

[ Gt (k908 = 20)019), y <D -

Remark 1. The DO evolution Egs. (5a)—(5c) are derived by using the DO conditions and DO representation. It is shown in [1]
that by imposing suitable restrictions on the DO representation the equations for methods such as Polynomial Chaos or
Proper Orthogonal Decomposition (POD) can be recovered from the DO evolution equations. For example, PC can be recov-
ered by setting Y;(t; w) = W;(¢(w)), where P;(¢) is an orthogonal polynomial in terms of &.

Remark 2. From the DO representation, the moments can be readily computed. For example, the first moment, i.e., the
mean, appears in the DO representation as ti(x,t) while the second moment is directly computed as follows:

N 2 N
Varfu] = E[(u — )" = E KZM) = > uix, DEYY Juj(x, 1),
i1 ij=1
As the DO representation at any fixed time t can be seen as Karhunen-Loeve decomposition, there is a relationship be-
tween the eigenpairs for the covariance matrix of Y;(t;w), i=1,...,N and the eigenpairs for the covariance operator of
u(x, t; w). For the covariance matrix C whose (i, j) element is Cy = Cy,y;), we have a set of eigenvalues and eigenvectors that
satisfies the following eigenvalue problem

C(t)pi(t) = pypi(t), k=1,...,N, (7)
where ¢;(t) = (¢ (b),. .., dpy(t)". Similarly, for the covariance operator for u(x, t; ®), there exists a set of eigenvalues and
eigenfields for C,(x,y) through the Karhunen-Loeve decomposition such that

[ Cutxyoitx ok = aonty. o, (8)

JD

where Cy,(x,y) = E[(u(x, t; ) — u(x,t))(u(y, t;w) — u(y,t))]. In order to relate the eigenvalues and eigenvectors for Y; with
those for u(x, t; w), we substitute the DO representation of u into C,(x,y) and compare Egs. (7) and (8) to obtain the following
relations:

=P VX, 1) = d(Dw(x, t).

This shows that the stochastic coefficients Y; together with the modes u; provide the necessary information to describe both
the shape and magnitude of the uncertainty that characterizes a stochastic field but also the principal directions in # over
which this stochasticity is distributed.

2.4. Hybrid method: combining PC with DO

In Theorem 1, it is assumed that the initial condition for the SPDE is random from which the corresponding initial con-
ditions for DO components are derived. However, in practice in many cases the initial condition for the SPDE is deterministic
while the randomness comes from other sources such as random coefficients or random forcing. Then Y;, i=1,..., N at the
initial time becomes zero, which makes the covariance matrix for Y; singular. Although the singular limit for the DO equa-
tions exist, the transition to finite covariance creates numerical issues. Most importantly, in such a case it is not clear what is
the optimal choice to initiate the stochastic subspace. For such problems we propose a hybrid approach of Polynomial Chaos
(PC) and DO methods in order to avoid the aforementioned problems. Specifically, for PC we employ the probabilistic collo-
cation method (PCM) or multi-element PCM (ME-PCM), which was found to effectively deal with problems exhibiting low
regularity in parametric space as well as for long-term integration [23]. We first use PCM or ME-PCM from the initial time ¢,
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up to some time, say t;, provided that the stochasticity is sufficiently developed, and then switch over to the DO method at t;
and employ the KL decomposition to initialize u, {Y;} and {u;}.
First, we construct the covariance matrix Cy(.¢,)(X,y)

Cu(n,ts)(x:y) = E[(U(X, ts) - ﬂ(x7 ts))(u(yv ts) - ﬂ(y7 tS))L

where u and @ at t = t; are known from PC computations. Then, we compute the eigenpairs for Cy.y,(x,y) by solving
[ G y)gdx = rg().

By setting
$i(X)

ui(x7 ts) =T L and Yi(t57w) = <u(x7 tSJw) _ﬁ(x7 t):“i)a

el

we initialize the DO components at t = t; and we are ready to solve the DO evolution equations. This procedure is sum-
marized in Algorithm 1.

Algorithm 1. Hybrid approach of PC and DO method

1: Run PCM or ME-PCM up to t = t; from t = 0.
2: At t = ts, use the KL decomposition for the solution:

N
U, t; ) = WX, t5) + Y _Yilts; 0)y(X, t).
i=1
From the KL decomposition, we can initialize u(x, t;), {Y;(ts; @)} and {u;(x,ts)} for DO method.
3: Switch over to the DO method up to time t = ;.

We will illustrate how the DO evolution equations are used for solving two SPDEs: (i) advection equation in this section and
(ii) Burgers equation in the next section. Both are assumed to have deterministic initial conditions to illustrate the advan-
tages of the proposed hybrid approach.

3. Numerical example I: advection equation

Consider the following stochastic advection equation [24]

% +V(t;w) % =0, Y(t,x)€[0,T] xD=[0,27] (9a)
u(0,x) = g(x) =sin(x), VxeD (9b)

The randomness comes from the advection velocity V(t; w), which is considered to be either time-independent or time-
dependent. For the time-independent case it is assumed to be a Gaussian random variance V(t;w) = V(w) = ¢ ~ N(0, 62),

while for the time-dependent case a stochastic process whose covariance kernel is given as Cy(t;,t;) = g exp (7 @) with

L being the correlation length. It is known in [24] that the stochastic advection Eq. (9) has exact solutions for the mean and
variance.
The random transport velocity is decomposed through the truncated Karhunen-Loeve representation

M
V(t,w) = EVI(t) + > adi(D)Zi, (10)
i=1

where {Z;}", are uncorrelated random variables with zero mean and unit variance, and {¢;(t), 4;}/', is the eigenpair corre-
sponding to the covariance kernel Cy(t1, t;), i.e. satisfying

/Dcv(f1~,t2)¢i(f2)df2 = Jigi(t1), (1)

where the exponential covariance kernel has a closed form for the eigenfunctions [24]:

w cos(wt)/c + sin(wt)
VA +wW2/T/2 + W2 /cz —1)sin2wT) /(4w) + (1 — cos(2wT))/(2¢c)’

where ¢ = 1/L and w = y/2c/4; — c2. The theorem of Cameron and Martin [25] guarantees that the truncated decomposition
converges to V as M goes to infinity; further, we assume that E[V](t) = 0.

di(t) = (12)
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Using the DO representation, we obtain the form of the evolution operator .#

ol N ou;
L(u)=-V(t;w) (a (*,t) + ;Yi(f; w)a (x, f))-

3.1. Exact formulas of DO components

In this subsection, we derive the exact formulas of DO components u; and Y;, i =1,...,N for the stochastic advection
equation. First we consider a time-independent case, i.e., V(t;w)=V(w)= ¢(w). The exact solution for Eq. (9) is
ux,t;w) = g(x — V(w)t) = sin(x — ¢t) and hence

u(x, t; ) = sin(x) cos(&t) — cos(x) sin(&t). (13)
In the DO representation, the solution is expressed as u(x, t; ) = E[u](x, t) + .1, u;(x, t)Yi(t; ) and comparing this with Eq.
(13) yields
a’t?

N
;lJi(X, 0)Yi(t; w) = — cos(x) sin(&t) + sin(x) (cos(g“t) —exp (_ T>>7

where the last term is the mean of the solution. Hence we have a finite number of modes, i.e., N = 2, and the exact formulas
for u; and Y; are as follows:

_ cos(x) sin)
U (X7 t) = \/ﬁ , U (X7 t) = \/ﬁ
Yi(60) = —V/ASINE), Yot ) = _ﬁ<cos(¢t) ~exp <_%f2>>

Note that the DO basis is scaled to be an orthonormal basis while the DO components are the same up to the sign, i.e.,
2ol =35 (—ui)(=Yi).

In a similar way we can derive the exact formulas of DO components when V(t; @) is time-dependent with covariance ker-
nel being Cy(t;,t;) = 0% exp (— @) We have again N = 2 and the exact formulas for u; and Y; are:
cos(x) sin(x)

T uy(x,t) :7

Yi(t;w) = —v/7sin </O[ V(s; w)ds), Y, (t;m) = f\/ﬁ<cos (/Ot V(s; a))ds) —exp <7 02(2)0'2>>7

so the time-dependent modes are given by semi-analytical forms.

ui(x,t) =

3.2. Numerical solution of the evolution equations

The DO evolution Egs. (5a)-(5c) involve the numerical integration in physical space as well as in random space. We define
the collocation points and weights for the physical space by (x;, Wk)’,:’; and the random space by (¢;, yj)J’-V:q. We choose Fourier
collocation points for x;, k=1,...,Ns, and sparse grids based on Gauss-Hermite in one dimension for ¢, j=1,...,N,. For
the time discretization, we use explicit methods for all DO evolution Egs. 5a, 5b, 5c. Two inner products are involved in
DO equations, given in discrete form below:

e Inner product in the physical space

. N
(h(x),g(x)) = /Dh(x)g(x)dx ~ Y h(X)g (X)W

k=1

e Inner product in the random space, i.e., expectation operator
Nr
Elh(w),g(w)] = /9 h(w)g(w)p(w)dm ~ Y h(&)g(&)y;-
=

Substituting these equations into the DO Egs. (5b) yields

At Ns
L’ffr’ D) (Fult:0)] ~ ELZ [l )] 0) = D (L(0x0) — EL2(w)(0.50) st %) w

k=1

Ns N .
= Z <V(t,w)gi(t7 Xk) — Z:(V(t7 w)Y(t,w) — E[Wj](t)) a(l“7 xk)>u,-(t,xk)wk
k=1 Jj=1

N N

j=1 j=1
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where

Ns —

Zutx i(t,x)w, and A-—iauj(tx)u(tx)w
£ k k k jl*k:]ax s Ak ) UL, Ak k
Note that for each i the above stochastic differential equation is a vector equation of size N, because we solve the equation at
the collocation points &, j=1,...,N,. Therefore, there are N x N, equations for Y;.

The equation for the mean i1 becomes

8uét£><) — E”[2[u(. ZE[W 8u, £x)
since E[V](t) = 0. Note that we solve this equation at the collocation points x;, k =1,...,N; and E[VY;] is independent of the
physical space.
The third equation for the modes u;(t,x), i=1,...,N becomes
0Ll 0 0 < (1
ZCU (%) = [[IE”[Zu( t w)])Y)] = E°[Lu(, )] Y] = Y (E[L[u(, t; o)]Yj](t %), u(t %) (£, X)
Vi k=1
where
N
Cij = Cryay,) = EIYi(t, @)Yj(t, @)] = D Yi(t, &)Y;(t, &),
k=1
The term E[Z[u(-, t; w)]Y;](t,x) can be computed as follows:
N au,

Dy = E[Z[u(-, t; 0)]Y](t, %) = —E[VY;](t) th - EVY

i=1

(t Xk)

3.3. Numerical results for time-independent V(w)

We consider the case where V(t; ) is a Gaussian random variable with mean 0 and variance 2. We present two different
methods to solve the DO evolution Egs. 53, 5b, 5c. In the first we assume that Y;(0; w) = 0 and u;(x, 0) are orthogonal poly-
nomials while in the second we use the hybrid method proposed in Section 2.4. The parameters are as follows
At =0.001, t; =5, N=2, Ny =128, N, =32, ¢ = 0.1, where t; is the final time. Fourier collocation in the physical space
and Hermite collocation in the parametric (or random) space are used to discretize the space. (The number of collocation
points in the physical space is denoted by N; while the number in the random space N,.) We use the third-order Adams-
Bashforth (AB3) as a time-integrator to minimize the error due to the time discretization. Indeed, Fig. 1 shows that AB3 is
much better than the Euler method with errors approaching machine accuracy. Although this is expected, we want to obtain
the absolute errors of time integration so that we will only consider the errors in parametric space later. Also, this temporal
accuracy will be very important when we switch from PC to the DO method. The relative L, error for the mean is defined as
|E(Unum) — E(Uexact) 1, / |E (Uexact ) |1, where U, is the numerical solution and u. is the exact solution.

The exact solution, which is used as reference, for the mean and the variance has the closed form [24]:

ot?

E[u](t,x) = sin(x) exp (7 T)’ E[u?)(t,x) = % [1 - cos(2x) exp(—26?%t2)], Var[u?](t,x) = E[u?] — E[u]’,

where u(x, t) = g(x — &t) = sin(x — &t).

3.3.1. DO method with initial basis being orthogonal polynomials

Since the initial condition is deterministic, the stochastic coefficients Y;(0; w), i = 1,...,N are zero. To illustrate how the
solution evolves in time through the DO evolution equations, we choose initially the linear subspace Vs spanned by orthog-
onal polynomials with the stochastic coefficients Y; being zero. The orthogonal polynomials on [0,27] can be constructed
using Gram-Schmidt orthogonalization.

Fig. 2 shows how the basis for Vs evolves in time through the DO evolution Eq. (5c). As mentioned, orthogonal polyno-
mials on [0,27] are chosen as a basis for the initial condition for u;, i =1,...,N and they are evolving and converge to the
Fourier basis of period one. Once they become the Fourier basis, the linear subspace Vs does not change but remains invari-
ant in time. The mean and variance are shown in Fig. 3 and they agree well with the exact solution at t; = 5. This shows that
the DO method can recover (“on-the-fly”) the optimal basis as it is integrated in time.

3.3.2. Hybrid DO method
The number of DO modes N should be chosen in such a way that the KL decomposition of the solution with N terms
approximates well the solution u(x, t; w). The switching time from PC to DO is chosen as t; = 0.001. In other words, for this
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Fig. 1. V(t;w) = V(w) = ¢ ~ N(0,0?) with ¢ = 0.1. The mean of the solution using AB3 has eight orders of magnitude better accuracy than the Euler
method.

simple linear problem only one time step for the probabilistic collocation method may be used to switch over to DO method.
The basis from KL decomposition at t; = At is, in fact, the Fourier basis so it does not change in time, i.e. the linear subspace
does not evolve but remains invariant in time. Fig. 4 shows the mean and variance at t = 5 with the hybrid method with
ts = 0.001.

We now examine the error of the mean and variance and compare them with those from PCM. Both have the same
parameters such as At, Ns and N, for numerical discretization. As shown in Fig. 5, DO have as good an accuracy as PCM does
for the mean and variance. However, DO are faster than PCM as will be demonstrated in the next subsection. While the error
of u; stays constant in time, the error of Y; increases in time, hence it accounts for the increase of the error of the variance
since the covariance matrix of the stochastic coefficients is involved in the variance.

Since we know the exact formulas for DO components, we can compute the error of DO component computed numeri-
cally in Section 3.2, and they are shown in Fig. 6.

3.4. Numerical results for time-dependent V (t, )
We consider the case where V(t; w) is described by the exponential covariance in time, i.e. Cy(t1, t;) = o exp(—172) and L

is the correlation length that characterizes the stochastic process. The exact solution is u(x, t; w) = sin (x - [é V(s; w)ds) and
its mean and variance are as follows:
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0.6 0.8
0.4 0.6}, -
0.2 04t
= 0
z 00 < 02}
s ' g
—02 0.0 — =0
- =01
—0.4 ool o
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08 3 1 5 —0.6; :
xz x

Fig. 2. V(t;w) = V(w) = & ~ N(0, 0%) with ¢ = 0.1. Left: u,, Right: u,. Initially u; and u, are polynomials of first and second-degree, respectively. They evolve
via the DO evolution equation and change into the Fourier basis. Once they become the Fourier basis, they are invariant.
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Fig. 3. V(t;w) = V(w) = ¢ ~ N(0, 0?) with ¢ = 0.1. Mean (left) and variance (right) of the

orthogonal polynomials. The parameters are ¢ = 0.1,N; = 128 and N, = 32.

advection equation at t; = 5 with the initial condition for u; being
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Fig. 4. V(t;w) = V(w) = ¢ ~ N(0, 02) with ¢ = 0.1. Mean (left) and variance (right) of the advection equation at t; = 5 from hybrid method. They agree well

with the exact solution. The parameters are ¢ = 0.1, N; = 128 and N, = 32.
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Fig. 5. V(t;w) = V(w) = & ~ N(0, 0%) with ¢ = 0.1. Errors in the mean and variance using DO and PCM are identical.
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E[u](x,t) = sin(x — Vt) exp(—a*a?/2)
1 - cos(2(x — Vt)) exp(—202a?)
2

Viul(x.t) = — Elu?,
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(14)

(15)

where a = a(t) depends on the type of the process V(t;w) we model, i.e.,

2, if fully correlated,
@ =< 2L(t — L(1 — exp(—t/L))), partially correlated,
tAt, mutually independent

The parameters are

At=103 L=5  ¢=01, t=5 N;=128.

We use KL decomposition to discretize V(t; w) and the dimension of random space is determined by how many terms in the
KL decomposition we keep. Table 1 shows the dimension of the parametric space with respect to the percentage of energy
above which we keep the terms. We solve the stochastic advection equation using three methods; one is the hybrid DO
method and the other PCM. As we increase the dimensionality of the parametric space by adding more terms in the KL
decomposition of V(t; w), the error of the mean and variance decreases as shown in Fig. 7. Note that, like the time-indepen-
dent case, DO and PCM has the same order of magnitude of the error when they use the same parameters for numerical dis-
cretization. However, DO are much faster than PCM, especially for high-dimensional parametric space as shown in Fig. 8.

4. Numerical example II: Burgers equation

In this section, we consider the Burgers equation. First, assuming that the basis and stochastic coefficients are known ex-
actly, we obtain the proper forcing in the Burgers equation from which we illustrate convergence. Second, we consider the
Burgers equation with random forcing and demonstrate convergence with respect to the number of DO modes.

4.1. Case A: exact DO components

We first consider the basis to be periodic in space and time, given by the expression

VT

Then, we have the dynamic orthogonality condition, i.e.,

Un (X, 1) cos (nx — cyt), x€[0,2m],

ou
<a—t"7um>:0 and  (up, Un) = Spm.

For the stochastic coefficients, we consider

Yi(t;) = Ri(1 — e™) cos (it + @;(w)) + &(w),

=
i
-

error of the basis v;

r
—
IS

L
=
.

time

Fig. 6. V(t;w) = V(w) = ¢ ~ N(0, 6?) with ¢ = 0.1. The error of DO components u; (left) and Y; (right), i = 1,2. The error for Y; increases in time,

accounts for the increase of the error of the variance.

L, error of Y;

n=12,....,c, eR.
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Dimension (or number of terms in the KL decomposition) of the parametric space with respect to energy.

Energy (%)

Dimension (M)

time
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Fig. 7. Relative L, error for the mean (left) and variance (right). The reference solution for the mean and variance is from the exact formula. As we increase
the dimension of the random space i.e. we approximate V(t; @) better with more terms, the relative L, error decreases.
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Fig. 8. Computational time to solve the advection problem using DO and PCM. DO is much faster than PCM, especially in high dimensions.

where &(w) is a Gaussian random variable with mean zero and variance p?R?, and ¢;(w) is a uniform distribution in [0, 27],
T; and J; are timescales, and R; are given positive quantities defining the magnitude of the stochastic coefficient.
By construction we can check that E”[Yi(t;w)] =0, and moreover, for i#j, E”[Y(t;)Y;(t;w)] =0 while, for
i=j,E°[Yi(t; 0)Yj(s; )] =R} [p? +1 (1 — e ¥/T) (1 — e¥/T) cos [4i(t — s)]].
For t = 0, we have Y;(t; w)|,_, = &(w), i.e., the stochastic coefficients are normally distributed while, for large t, we have

that

since 1 —e /i = 1.
Based on this form with mean zero field, we have the random field

Yi(t; w) = Ricos (4t + @;(w)) +

&i(w)
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ux, t; m) = XN: ! (Ra (1 —e7/™) cos (Ant + @, (®)) + Ex()) €OS (X — Cat) (17)
—+—u—-v—=F(xt;w), (18)

N
F(x,t;m) = Z& (Tl e /T oS (Jnt + @ () — in(1 — 7™ sin (2nt + qon(a)))> oS (nx — c;t)

N N N
+y — 1Y o(t: ) sin (nx — cat) ZZ%Y” t; )Y (t; @) cos (nx — c,t) sin (Mx — Cpt)

n=1m=1

N 2
n
+ v§ —nYn(t; ) oS (X — Cpt).

4.1.1. PDF of Y; and the solution

We can derive the exact formula of the probability density function (PDF) of the stochastic coefficients in Eq. (16) and
hence the solution u(x, t; w). For simplicity, we consider N = 1 but it can be extended easily to the case with many dimen-
sions. We need the following two lemmas [26].

Lemma 2. Let X,Z be two #%-valued independent random variables and let Y =X +Z. If X and Y has a density fx and f7,
respectively, then the PDF of Y is the convolution of fx and f7:

- / fulz - Yy (2)dz = / Fe®fly - x)dx. (19)

Lemma 3. Let S € %" be partitioned into disjoint subsets So, Sy, .. .,Sm such that U",S; = S, and such that m,(So) = 0 where m, is
a Lebesgue measure on (#",#"), and that foreachi=1,...,g : S; — #" is injective and continuously differentiable with non-van-
ishing Jacobian. Let Y = g(X), where X is an #"-valued random variable with values in S and with density fx. Then, Y has a density
given by

= fulg'W)ldet]g 1 (v)| (20)
i=1

where g;! denotes the inverse map g;! : g(S;) — S; and ]g 1 s its corresponding Jacobian matrix.

Let ® = ¢, X = ¢ ~ N(0,0?),Z = a(t) cos(it + O) = g( ®)and Y = X + Z with 0 = Rp and a(t) = R(1 — exp(—t/T)). First, we
compute the PDF of Z using Lemma 3. We can decompose S = [0,27] = S; US,, where S; = [0, ] and S, = [r, 27]. Since © is a
uniform distribution on S; U S, and g(0) is identical on S; and S, (up to sign), we only need to consider the domain S; to com-
pute the PDF of Z. The phase does not affect the PDF of Z and hence, in this case /it can be omitted to compute PDF of Z, i.e., f; =
fﬂ(t> cos(®)- Note that

1
f@)((}):E, for ()651

g7 '(z) = arccos(z), Jg1(2) = - for z€|0,m],

1-22
which gives us

iz =—

amy/1— (z/R)Z.

Now we use Lemma 2 to derive the exact PDF of Y:

fry) =

" 1 - W)
fx(y = w)fz(w)dw = exp ( )
J-a v/—a V2ma? amy/1 — W/a

T (y — aw)? 1 —a cos (v —acos(x))’
= exp | — dw = / ex dx 21
/4 V2no? p< 20? 7v1 — w2 noV2T Jo P 1)
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where the third and fourth equality follows from the change of variables. The integration in Eq. (21) can be computed with
high accuracy using Gaussian quadrature points since the integrand is smooth.

We can derive the exact PDF of the solution u(x, t; w) at x and time ¢ by using Lemma 3 applied to fy(y) because u is the
multiplication of Y; by u; (x,t) that is a constant at fixed x and t. Hence, for a fixed x and ¢, the exact PDF of the solution is as
follows:

1, /1
fi@) = 4 (30). 22)
where A = L cos(x — c;t). This result can be also verified numerically.

4.1.2. Computational results

The stochastic coefficients Y; depends on a number of parameters which determine the PDF. Here we study two different
cases as shown in Table 2.

Initially Y; is a Gaussian random variable with mean zero and variance p2R? but as time goes on, a uniform distri-
bution is introduced through the trigonometric function in Eq. (16) and hence, the PDF of Y; changes depending on the
parameters. For case I and II, the PDF at time ¢t = 0 and t = 1 is shown in Fig. 9. For case I, the PDF follows the form of
Gaussian PDF in time while, for case II, the PDF becomes bimodal so that it has two peaks whose value is far away from
zero.

We solve the corresponding Burgers equation using the DO method and estimate the PDF of the stochastic coefficients
and the solution at different times and compare them with exact PDF from Eqgs. (21) and (22). The parameters for numerical
discretization are as follows:

At=0.001, t=1, N=1, N;=128, N, =16,

where N; is the number of collocation points in one-dimension, and a tensor product representation is employed for the
numerical discretization in the parametric space as the dimension of the parametric space, in this case 2 since we have
two random variables for Y, is low.

Fig. 10 shows the PDF of the stochastic coefficient and the solution at three different times t = 0.1,0.3, and 1.0. The PDF of
the stochastic coefficient maintains the Gaussian form in time with the variance being widened. Fig. 11 shows the PDF of the
stochastic coefficient and the solution at three different times t = 0.1,0.2, and 1.0. The PDF of Y becomes non-Gaussian and
has two peaks whose distance is increasing in time. The plots demonstrate that the DO method is able to capture both Gauss-
ian and non-Gaussian behavior well.

DO and PCM are employed to compute the Burgers equation for comparison, and the L, errors of the mean and variance
are shown in Fig. 12. The same parameters are used for both DO and PCM and the errors are almost identical. Next, we com-
pare the computational efficiency. In the advection equation where the dimension of the parametric space is high, we
showed that DO is much faster than PCM in Fig. 8. The computational times with respect to the number of points in the para-
metric space are shown in Fig. 13; DO is faster than PCM for this problem that has a low dimensional parametric space while
the accuracy for both DO and PCM remains the same.

4.2. Case B: random forcing

Consider the following stochastic Burgers equation with random forcing

ou  ou  Pu 1+4¢
Chu=vo—+

sin(2mt), V(t,x) € [0,T] x D = [0, 27]

ot ox~  ox2 2 ’ (23)
u(0,x) =g(x), VxeD,
where ¢ ~ U[—1, 1] and the initial condition g(x) is given as
g(x) = 0.5(exp(cos(x)) — 1.5)sin(x + 27 - 0.37). (24)

We take v = 0.05. Note that the period of the forcing is one. Using the DO representation, we obtain the form of the evolution
operator .# and some necessary forms:

Table 2
Two different cases of parameters for Y.
Case | Case II
T 0.1 0.1
A 1 1
R 0.1 0.1

P 1 0.1
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Fig. 9. Case I (left) and case II (right). The PDF at t = O for both cases is Gaussian but as time goes on, the PDF for case II is bimodal while the PDF for case I

remains Gaussian with larger variance.
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Fig. 10. Case L. The PDF of the solution at x = 7t (left) and the stochastic coefficient (right). The PDF maintains the Gaussian form at time t = 1, and DO is able

to capture the PDF of the solution as well as the stochastic coefficients well.
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Fig. 12. L, error of the mean and variance for case I (left) and case II (right). For both, DO and PCM exhibit the same accuracy.
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Fig. 13. Computational time for PCM and DO. All parameters are the same for both PCM and DO. The number of the collocation points in one direction is
denoted by N;. Hence the total number of collocation points are N? since the dimension is 2 and tensor product is used. DO is faster than PCM while the
accuracy for both methods is the same.

14+¢ . - . o _ Pu\  1+¢
LU, t; )] = —Uly + Vi + < sin(2nt) = —utly, — Yi& (uinr) = YiYju; 8—){’ +v (uxx +Y; 8x21> + 5 = sin(27t)
_ 8Llj _ .
E[# (u)] = —tth — Cytti —2 + Vil + 0.5 sin(271)
= ouy _ ouy o 14 .
E[zw)Yj = - (Cijuiux + Cig g, U+ Ciglh 7) + VCU’W; +E {j Y;| sin(27),

where Cj; = E[Y;Y;Y,]. Note that E[#(u)Y;] involves the third moment of the stochastic coefficients and hence the PDE for u; is
more complicated than the one in the advection equation in the previous section. Since the initial condition is deterministic
as in the advection equation, the Y;, i =1,...,N at the initial time become zero, which makes the covariance matrix for Y;
singular. Hence, we use the hybrid method to avoid the singularity due to the deterministic initial condition.

4.2.1. Computational results: hybrid method

Unlike the advection problem where only one time step is enough to switch from PC to DO, we need to march for more
time steps to allow the stochasticity of the system to develop fully. We have performed some sensitivity studies to see how
to choose the switching time from PC to DO but a more systematic future study is required. We can choose the number of
modes at the switching time based on the eigenvalues of Cy.,(x,y). One criterion is to choose the number of modes such
that the sum of corresponding eigenvalues makes up to more than a threshold, say 99% of the total.
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The eigenvalues of KL decomposition of the solution at ten different times are shown in Fig. 14. Note that the eigenvalues
of KL decomposition are the same as those of the covariance matrix C whose (i,j) index is E[Y;Y;]. We choose the switching
time to be t; = 1.0 and the number of DO modes to be 6 based on Fig. 14. Note that the number of modes should be increased
to capture the same percentage of the energy as the system evolves in time.

The parameters are as follows:

At=0.001, t;=1, t;=5, N;=128, N, =64, N=6.

We choose N = 6 because, at t; = 1, the sixth mode is the largest eigenmode whose eigenvalue is larger than the threshold
value. Fourier collocation in the physical space and Legendre-Gauss collocation in the parametric space are used for discret-
ization. The third-order Adams-Bashforth (AB3) is used as a time integrator to minimize the error due to the time
discretization.

The mean and variance at t = 5 using the hybrid method are shown in Fig. 15; good agreement with the exact solution is
achieved. The L, error for the mean and variance are shown in Fig. 16.

If the number of modes N is chosen to be smaller than 6, then the KL decomposition with N at the switching time t; = 1
approximates poorly the solution, and hence DO with less number of modes yields larger truncation error. Fig. 17 shows the
exponential convergence obtained with respect to the number of modes at time t = 5. There is saturation when the number
of modes is increased from five to six. This is because the evolution equations for the stochastic coefficients Y;, in particular
the fifth and sixth are stiff. The stiffly stable scheme will be required to overcome saturation. This example is the first dem-
onstration of the fast convergence of the DO method for a nonlinear SPDE.

The hybrid DO method is sensitive to the number of modes N and switching time t; as shown in Fig. 18. The switching
time determines the maximum number of possible modes because the DO components are chosen from KL decomposition of
the solution at t;. Hence we choose the number of modes to be the largest eigenmode at a given t;. Choosing the switching
time is problem-dependent; for the advection equation (linear), we need just one time step to switch over to DO while for
the Burgers equation (nonlinear), we need many more time steps for DO to have a good accuracy.

A high-order time discretization for both PCM and DO in the hybrid method is used to minimize the error due to temporal
discretization. Fig. 19 shows the relative L, error for the mean using different time discretization methods for PCM; one is the
fourth-order Runge-Kutta (RK4) and the other the third-order Adams-Bashforth (AB3) which is used as a time discretization
for the DO method. A large jump at the switching time t; = 1 is observed when the order for the time discretization method
is reduced from the fourth-order to the third-order. In this paper, we consider the third-order AB method for DO as well as
PCM for the Burgers equation. Hence, compatibility in the temporal accuracy between PCM and DO is required to avoid large
error due to switching methods.

5. Numerical example III: nonlinear diffusion equation

In this section, we consider the nonlinear diffusion equation which is 1-D in physical space but multi-D in parametric
space:

8”((9tt’x) = a% (a(x; ) aué;’”) +1, x€(0,1), )
u(t,0) = u(t,1) = 0, (26)
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Fig. 14. The eigenvalues of the covariance matrix C whose (i,j) index is E[Y;Y;] at different switch times t;. Left: eigenvalues for t; = 0.5j, j=1,...,5, Right:

eigenvalues for t; = 0.5j, j =6,...,10. The parameters used are v = 0.05,N; = 128,N, = 64 and At = 0.001.
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Fig. 15. Mean (left) and variance (right) of the solution at t = 5 for the Burgers equation. The switching time ¢, is 1 and the number of DO modes is 6. The
mean and variance from the probabilistic collocation method with N, = 512 using the fourth-order Runge-Kutta method are considered to be the exact
solution.
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Fig. 16. Relative L, error for the mean (left) and variance (right) of the solution for the Burgers equation with random forcing. The switching time t; is 1 and
the number of DO modes is 6. Since the period of the random forcing is one, the L, error of the mean also shows periodicity with the same period.
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Fig. 19. Relative L, error of the mean for the Burgers equation. Two time discretization methods for PCM are used; black and blue line uses the fourth-order
RK and the third-order AB method, respectively. Other parameters for both methods are set to be the same. When the order of the time discretization
method is reduced at the switching time, the error increases dramatically.

where the stochastic diffusion coefficients a(x; w) is given by the KL expansion
M
a(x; ) = a+0ay_Vigi(X)&(0). (27)
i1

{il—}?ﬁ ; and { r/)i(x)}?i ; are, respectively, M largest eigenvalues and corresponding eigenfunctions of the Gaussian covariance
kernel

2
Cualt,%2) = exp (— @) , (28)
C

where [, is the correlation length of a(x; @) that dictates the decay of the spectrum of C,,. The random variables {&;(w)}", are
assumed to be independent and uniformly distributed on [—1, 1]. The coefficient ¢, controls the variability of a(x; »), and we
consider two cases: (i) [ =1,M =4 and (ii) . = 1/5,M = 14 with a = 0.1,0, = 0.03. The dimension of random space is
determined by how many terms we keep in the KL decomposition of Eq. (27). Using the DO representation, we obtain the
form of the evolution operator #:

Lu) = % (a(x; w)?—il) + Z:Y,-a% (a(x; ) %) +1.
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A spectral element method was employed for physical space [27] and PCM for parametric space [20] to solve the correspond-
ing DO equations. In particular, we use sparse grids method with Clenshaw-Curtis abscissas because the dimension of ran-
dom space is modestly high. The reference solution is obtained by PCM with level 5 sparse grids for M = 14 and level 6 sparse
grids for M = 4.

The parameters are

At=10" t,=0.5, ¢ =30. (29)

We use the forward Euler as a time-integrator with small time step. For DO representation we test different number of
modes; for M =4,N=1, 2, 3,4 and for M = 14, N=2, 4, 6 based on the eigenspectrum of the KL decomposition of the solu-
tion. The mean and variance at t = 30 using the hybrid method are shown in Fig. 20 for [ = 1 and I, = 1/5. Good agreement
for higher modes with the exact solution is achieved. Fig. 21 shows the exponential convergence obtained with respect to the
number of modes at time t = 30.

6. Summary

We have developed a hybrid DO-PC method to tackle the singular limit of the DO equations for deterministic initial con-
ditions. In particular, we have presented an efficient approach to deal with the singularity of the stochastic coefficients and
the initialization of the DO stochastic subspace. This scheme is based on the solutions of the SPDE in the very initial regime
using the Polynomial Chaos method up to the switching time when the stochasticity is developed (obtaining non-Gaussian
characteristics) and then switch over to DO method as in Algorithm 1.

We first compared the performance of the two methodologies, i.e. PC and DO methods in analytical examples involving
linear and nonlinear problems. In particular, we derived exact formulas of the stochastic coefficients and basis elements for
the advection equation and also derived the probability density function of the stochastic coefficients and basis for the
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Fig. 20. Top: I. = 1, bottom: [, = 1/5. Mean (left) and variance (right) of the solution at t = 30 for the nonlinear diffusion equation. DO solutions with N = 2
for I. = 1 and with N = 2,6 for [, = 1/5 are plotted and they show good agreement with the exact solution except that the variance with N = 2 for [ = 1/5is
different from that of the exact solution.
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Fig. 21. Relative L, error for the mean and variance at t = 30 for I. = 1 (left) and I. = 1/5 (right). Exponential convergence is observed as the number of
modes increases.

Burgers equation. Then, we applied the proposed framework with the source of randomness being in the coefficients of the
SPDE.

In the advection equation, even when the basis is initiated arbitrarily, the DO evolution equations are capable of following
the system satisfactorily in a way that the basis evolves to become the Fourier basis and remains the same thereafter. Clearly,
initiating the basis elements as orthogonal polynomials gives larger L, error compared with the hybrid method but the for-
mer example illustrates (i) the effectiveness of the DO method, which tracks the system accurately enough, hence converging
to the correct subspace, and (ii) the advantage of using the hybrid approach to initialize problems involving deterministic
initial conditions. For the Burgers equation, the hybrid method shows very good agreement with the exact solution with
the error being less than 107°. This is also the case when the excitation is such that the steady state dynamics involve
strongly non-Gaussian statistics with bimodal densities. For the nonlinear diffusion equation, the hybrid method shows very
good agreement with the exact solution and converges exponentially with respect to the number of modes.

For both advection and Burgers equation, the L, error shows that DO is as accurate as PCM. However, DO is more efficient
than PCM in terms of computational time, in particular in high-dimensional parametric spaces. In addition, it allows for the
expression of higher-order statistics through the probability density function of the stochastic coefficients. This suggests that
DO can be a good and cost-effective alternative to PCM.

Further investigations will include a detailed study of adaptive strategies, i.e., adding or removing modes, “on-the-fly”
and a multiscale approach to account for some of the energy of high modes that is neglected. Fig. 14 shows the eigenvalues
of the solution for the Burgers equation at different times; it is clear that as the system evolves in time, we need more eigen-
values to capture the same percentage of the energy; this can be done adaptively. In addition to this adaptive incorporation
of new energetic modes, we can add new “sub-grid-like” terms in the DO representation to account for the action of trun-
cated modes. This is similar to the idea of the multiscale method [28]. Another issue is the reformulation of the DO equations
by imposing bi-orthogonality of the basis and stochastic coefficients, i.e. replacing the DO condition (4) with
(ui(x,t), uj(x, t)) = 265 and E(Y;Y;) = d; [29]. This leads to a modified system of evolution equations, which, however, is equiv-
alent (via a dynamical transformation) to the DO evolution equations. These issues are currently investigated in some more
depth and results will be reported in future publication.
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