
Karhunen–Loève expansion for multi-correlated stochastic processes

H. Cho, D. Venturi, G.E. Karniadakis n

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

a r t i c l e i n f o

Article history:
Received 10 December 2012
Received in revised form
4 September 2013
Accepted 19 September 2013
Available online 28 September 2013

Keywords:
Colored random noise
High-dimensional systems

a b s t r a c t

We propose two different approaches generalizing the Karhunen–Loève series expansion to model and
simulate multi-correlated non-stationary stochastic processes. The first approach (muKL) is based on the
spectral analysis of a suitable assembled stochastic process and yields series expansions in terms of an
identical set of uncorrelated random variables. The second approach (mcKL) relies on expansions in
terms of correlated sets of random variables reflecting the cross-covariance structure of the processes.
The effectiveness and the computational efficiency of both muKL and mcKL is demonstrated through
numerical examples involving Gaussian processes with exponential and Gaussian covariances as well
as fractional Brownian motion and Brownian bridge processes. In particular, we study accuracy and
convergence rates of our series expansions and compare the results against other statistical techniques
such as mixtures of probabilistic principal component analysis. We found that muKL and mcKL provide
an effective representation of the multi-correlated process that can be readily employed in stochastic
simulation and dimension reduction data-driven problems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic simulation, sensitivity analysis and optimization of
multi-physics and multi-scale problems of interest in engineering
often involve non-stationary random processes with mutual
correlations. The effective mathematical representation of such
processes is the key element for the efficiency of any computa-
tional approach that aims at providing quantitative results. Over
the years many different techniques have been developed for this
purpose. A popular one employs series expansions in terms of
random variables. The series can be constructed, e.g., by using
orthogonal polynomials [1,2], spectral density methods [3–6],
wavelets [7–9], Karhunen–Loève (KL) decompositions [10–16],
bi-orthogonal techniques [17–19] or functional principal compo-
nent analyses [20–23]. Many of these methods have been devel-
oped for a single process or ensembles of statistically independent
processes, and their generalization to multi-correlated processes
and fields is not straightforward. Nevertheless, many systems
of interest to engineering involve multi-correlated processes,
for instance, earthquake ground motions [24,25], fluid–structure
interaction [26,27], acoustic propagation [28,3] and multi-scale
modeling of materials [29]. Thus, it is of fundamental importance
to develop appropriate mathematical frameworks to model
and simulate multi-correlated random processes effectively. The
spectral density method [4,5] has been already extended to multi-

variate non-stationary random processes, providing good results
in capturing the power-spectral density and the cross-spectral
density [24,30]. In addition, the numerical efficiency can be
improved by using fast transforms such as FFT, DFT, and digital
filters. However, the spectral density method is limited to weakly
stationary random processes. Another technique that has been
proposed to represent multi-correlated processes is the mixture
of probabilistic principal component analysis (moPPCA) [31,32].
In this method, one looks for a representation of multiple random
processes in terms of a linear combinations of independent ran-
dom variables. The expansion is usually constructed by analyzing a
large amount of data which is then classified into a prescribed
number of partitions while obtaining the principal axes for each
partition. If the relational structure between the data is considered
only within each partition then we have the so-called probabilistic
relational PCA [33]. A related approach has been recently intro-
duced by Vořechovský [34].

In this paper, we propose two methods that extend the
classical KL expansion to multi-correlated non-stationary sto-
chastic processes. The first is based on the spectral decomposi-
tion of a suitable assembled process and yields series expansions
in terms of an identical set of uncorrelated random variables. A
similar strategy has been proposed in the context of functional
principal component analysis [35]. The second approach relies on
expansions in terms of correlated sets of random variables. The
cross-covariance structure of the processes is imposed by setting
the cross-correlation between such sets of random variables
appropriately. Both these methods are straightforward to use
and can be readily employed in stochastic simulations based
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on Monte-Carlo, polynomial chaos [10,36] or probabilistic
collocation [37].

This paper is organized as follows. In Section 2, we present
the KL expansion for multi-correlated processes and introduce
the multiple uncorrelated (muKL) and multiple correlated (mcKL)
expansion methods. The effectiveness and the computational
efficiently of both methods is discussed in Section 3. In Section 4
we present an application of muKL to a tumor growth model
driven by two mutually correlated stochastic processes. Finally, the
main findings and their implications are summarized in Section 5.

2. KL expansion for multi-correlated processes

Let us consider an ensemble of n zero-mean, square integrable
random processes

ff 1ðt;ωÞ;…; f nðt;ωÞg ð1Þ
in a complete probability space ðΩ;F ; PÞ, where ωAΩ, Ω denotes
the sample space, F is a s-field on Ω, and P is the applicable
probability measure on F . We assume that each process is
defined in a bounded time interval ½0; T �. The correlation structure
between the processes ff 1ðt;ωÞ;…; f nðt;ωÞg can be represented in
terms of nðnþ1Þ=2 covariance kernels Cij,

Cijðs; tÞ ¼defE½f iðt;ωÞf jðs;ωÞ�; 1r ir jrn;

where E½�� denotes the statistical expectation operator. The quan-
tity Ciiðs; tÞ is the auto-covariance of the process f iðt;ωÞ, which
will also be denoted as Ciðs; tÞ, for notational convenience. If
the processes ff 1ðt;ωÞ;…; f nðt;ωÞg are mutually independent, then
the classical KL expansion can be applied to each process, leading
to multiple series which can be constructed separately [11,15].
However, if the cross-covariances Cijðs; tÞ are not zero, then it is not
straightforward to obtain consistent expansions for all random
processes, reflecting both the autocorrelation as well as the cross
covariance structure.

Hereafter we propose two different methods to overcome this
problem. The first relies on series expansions of all processes in
terms of a single set of uncorrelated random variables (see also
[35]). The second employs distinct but correlated sets of random
variables for each process [30,34,38]. We will examine both
stationary as well as non-stationary processes. In particular, we
will consider Gaussian processes with exponential

Ciðs; tÞ ¼
Di

τi
exp �jt�sj

τi

� �
ð2Þ

and Gaussian

Ciðs; tÞ ¼
Di

τi
exp �6

ðt�sÞ2
τ2i

" #
ð3Þ

covariances, where τi and Di represent, respectively, the correla-
tion length and the correlation amplitude of the process f iðt;ωÞ.
We will also consider non-stationary covariances [39,40], such as
those associated with fractional Brownian motion

Ciðs; tÞ ¼
Di

2
ðjsj2Hi þjtj2Hi �js�tj2Hi Þ; ð4Þ

where 0oHio1 is the Hurst parameter, and Brownian bridge

Ciðs; tÞ ¼Diðminðs; tÞ�stÞ ð5Þ
processes.

2.1. Multiple uncorrelated KL expansions (muKL)

In this method we look for a series expansion of each random
process in (1) in terms of a single set of uncorrelated random
variables. In order to construct such a series, we first consider an

assembled process ~f ðt;ωÞ defined as

~f ðt;ωÞ ¼def f iðt�Ti�1;ωÞ; tAI i; ð6Þ
where Ti ¼ iT , I1 ¼ ½0; T1� and I i ¼ ðTi�1; Ti� ð1r irnÞ. In other
words, the restriction of the assembled process ~f ðt;ωÞ to the
time interval I i coincides with the process f iðt;ωÞ. Note that here
we assumed that all processes in (1) are defined on the same
time interval ½0; T �, although this requirement can be easily
relaxed. Obviously, ~f ðt;ωÞ is still a second-order process satisfying

E½~f ðt;ωÞ� ¼ 0; E½~f ðt;ωÞ~f ðs;ωÞ� ¼ ~C ðs; tÞ; ð7Þ
where the assembled covariance function ~C ðs; tÞ is defined as

~C ðs; tÞ ¼defCijðs�Ti�1; t�Tj�1Þ; sAI i; tAI j: ð8Þ
At this point, we look for a KL-type expansion of the assembled
process (6) in the form

~f ðt;ωÞ ¼ ∑
1

k ¼ 1

ffiffiffiffiffi
λk

q
~f kðtÞξkðωÞ; ð9Þ

where ξkðωÞ are uncorrelated random variables

ξkðωÞ ¼def 1ffiffiffiffiffi
λk

p Z Tn

0

~f ðt;ωÞ~f kðtÞ dt; ð10Þ

while λk and ~f kðtÞ are, respectively, eigenvalues and eigenfunctions
of a symmetric compact integral operator [41,42] with kernel (8),
i.e., they are solutions to the homogeneous Fredholm integral
equation of the second kind

Z Tn

0

~C ðs; tÞ~f ðsÞ ds¼ λ~f ðtÞ: ð11Þ

However, our assembled covariance ~C ðs; tÞ could not be positive
semi-definite, even when all the covariances are positive semi-
definite. This might lead to negative eigenvalues. For practical
applications it is desirable to have a non-negative operator. In a
discrete setting this yields the following positivity condition for
the assembled discretized covariance ~C ðti; tjÞ:

∑
m

j ¼ 1
∑
m

i ¼ 1

~C ðti; tjÞxixjZ0; ð12Þ

for any finite time sequence ft1;…; tmg and real numbers fx1;…; xmg.
In other words, the m�m matrix

~C ¼

~C ðt1; t1Þ ~C ðt1; t2Þ ⋯ ~C ðt1; tmÞ
~C ðt2; t1Þ ~C ðt2; t2Þ ⋯ ~C ðt2; tmÞ

⋮ ⋮ ⋱ ⋮
~C ðtm; t1Þ ~C ðtm; t2Þ ⋯ ~C ðtm; tmÞ

2
66664

3
77775 ð13Þ

should be positive semi-definite for any set of m distinct time
instants in ½0; T �. As we will see in Section 2.1.1, the positivity
requirement introduces several constraints, e.g., in the cross-corre-
lation lengths. Once we have the available eigen-pair fλk; ~f kðtÞg
(k¼ 1;2;…), ordered according to the magnitude of the eigen-
values λk, then we represent each eigenfunction ~f kðtÞ in terms of n
sub-components ϕðiÞ

k ðtÞ (i¼ 1;…;n) defined as

ϕðiÞ
k ðtÞ ¼def ~f kðtþTi�1ÞI ½0;T �ðtÞ; ð14Þ

where I ½0;T � is the indicator function on the set ½0; T �. In this way, the
i-th random process f iðt;ωÞ is expanded as

f iðt;ωÞ ¼ ∑
1

k ¼ 1

ffiffiffiffiffi
λk

q
ϕðiÞ

k ðtÞξkðωÞ: ð15Þ
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Note that λk and ξkðωÞ appearing in this equation are the same as
those appearing in the assembled process (9). For each specific index
i, the set of sub-components fϕðiÞ

k ðtÞg (k¼ 1;2;…) is not orthogonal1

nor normalized in tA ½0; T �. However, ϕðiÞ
k ðtÞ can be easily normalized

within the time interval ½0; T�. This leads to the following series:

f iðt;ωÞ ¼ ∑
1

k ¼ 1

ffiffiffiffiffiffiffi
λ̂
ðiÞ
k

r
ϕ̂

ðiÞ
k ðtÞξkðωÞ; ð16Þ

where ϕ̂
ðiÞ
k ðtÞ ¼defϕðiÞ

k ðtÞ=‖ϕðiÞ
k ðtÞ‖2 and λ̂

ðiÞ
k ¼defλk‖ϕðiÞ

k ðtÞ‖22. We remark
that each random process in (15) or (16) is represented in terms of
the same set of random variables ξi. Therefore, the muKL method
cannot be used to represent heterogeneous sets of processes, i.e.,
processes with different types of random variables in the series
expansion.

Next, we study the convergence properties of truncated muKL
expansions. To this end, let us first define the truncated assembled
process as

SMðt;ωÞ ¼def ∑
M

k ¼ 1

ffiffiffiffiffi
λk

q
~f kðtÞξkðωÞ; ð17Þ

and the corresponding mean-squared error as

ɛ2M ¼def
Z Tn

0
E½ð~f ðt;ωÞ�SMðt;ωÞÞ2� dt: ð18Þ

By using the fact that ξk are uncorrelated and that ~f k are
orthonormal, we immediately obtain

ɛ2M ¼ ∑
1

k ¼ Mþ1
λk; ð19Þ

i.e., the truncation error of the series (9) decreases with respect to
the decay rate of the eigenvalues. The quantity ɛ2M also provides an
upper bound for the truncation error of the muKL expansion (15).
In fact, we have

Z T

0
E f iðtÞ� ∑

M

k ¼ 1

ffiffiffiffiffi
λk

q
ϕðiÞ

k ðtÞξk
 !2
2
4

3
5dt

¼
Z Ti

Ti� 1

E½ð~f ðtÞ�SMðt;ωÞÞ2� dtrɛ2M : ð20Þ

In addition, the errors of the cross-covariances Cij are bounded by
the error of the assembled covariance ~C ðt; sÞ in Eq. (8). In fact, by
Mercer's theorem [42], the quantity

ɛ
~C
M ¼def 1

J ~C ðs; tÞJ1

Z Tn

0

Z Tn

0

~C ðs; tÞ� ∑
M

k ¼ 1
λk ~f kðsÞ~f kðtÞ

�����
����� dt ds ð21Þ

goes to zero uniformly in M, and this implies that

1
‖ ~C ðs; tÞ‖1

Z T

0

Z T

0
Cijðs; tÞ� ∑

M

k ¼ 1
λkϕ

ðiÞ
k ðsÞϕðjÞ

k ðtÞ
�����

����� dt ds ð22Þ

is bounded by ɛ
~C
M . Similar results hold for the covariances Ciðs; tÞ.

The proper choice of M in (17) can be done, e.g., by imposing
a certain threshold for the errors ɛM or ɛ

~C
M . Based on Eq. (19),

this is equivalent to set a threshold for the relative cumulative
spectrum, e.g.,

∑
M

k ¼ 1
λkZ0:95 ∑

1

k ¼ 1
λk: ð23Þ

2.1.1. Positivity constraints for exponential covariances
We have seen in the previous section that the assembled

covariance kernel (8) is, in general, not positive semi-definite.
This could yield negative eigenvalues in the expansion of the
assembled process and, consequently, in the expansions of all
processes. In practical applications it is convenient to have positive
eigenvalues. This requirement induces a positivity constraint in
the integral operator at the left hand side of (11). In order to
understand the implications of such a constraint, let us consider
a simple prototype problem involving two random processes,
f 1ðt;ωÞ and f 2ðt;ωÞ, with exponential covariances and cross-
covariance as in Eq. (2). We choose two time instants ðs1; s2ÞA
½0; T �2, such that t1 ¼ s1 and t2 ¼ s2þT . This yields the following
assembled covariance kernel:

~C ¼

1
τ1

1
τ12

exp �js1�s2j
τ12

� �
1
τ12

exp �js1�s2j
τ12

� �
1
τ2

2
6664

3
7775;

which must be positive semi-definite for all s1 and s2. An equi-
valent statement for a matrix to be positive semi-definite is that all
the eigenvalues are non-negative and a necessary condition is that
the determinant is non-negative. In our case, this yields

det½ ~C � ¼ 1
τ1τ2

� 1
τ212

exp �2
js1�s2j
τ12

� �
Z0; ð24Þ

which is verified for all s1 and s2 provided τ1τ2rτ212. This result
can be extended to n exponentially correlated random processes
by choosing t1A ½Ti�1; Ti� and t2A ½Tj�1; Tj�, where io j. By using
similar arguments we obtain that the assembled covariance kernel
is non-negative if the correlation lengths satisfy

τiτjrτ2ij: ð25Þ

This positivity condition holds also for processes with Gaussian
covariances in the form (3). In summary, the set of correlation
lengths fτijg for which the muKL method is applicable is bounded.
The exact range will be determined numerically in Section 3.
Constraints of type Eq. (25) arise as a consequence of the
assumption that each process fi is a linear combination of an
identical set of random variables. In order to see this, let us revisit
the example above and assume that each process has the same
correlation length, i.e., τi ¼ τj. In this case the positivity condition
of the assembled covariance is satisfied by the requirement
τi ¼ τjrτij. Thus, the cross-correlation length between two pro-
cesses must be larger than the correlation length of each process.
In other words, expanding different random processes relatively to
the same set of random variables (as done in muKL) makes sense if
the processes are “enough correlated” to each other.

2.2. Multiple correlated KL expansion (mcKL)

Differently from the muKL technique introduced so far, where
only one set of uncorrelated random variables was used to repre-
sent the whole set of stochastic processes (1), the mcKL expansion
method employs different sets of mutually correlated random
variables. Let

f iðt;ωÞ ¼ ∑
1

k ¼ 1

ffiffiffiffiffi
γik

q
ψ i

kðtÞηikðωÞ ð26Þ

be the standard KL expansion of f iðt;ωÞ. For a fixed index i,
fγik;ψ i

kðtÞg are eigen-pairs of the auto-covariance Ciðs; tÞ, while
fηikðωÞg is a set of zero-mean uncorrelated random variables with
unit variance. Upon definition of

Kij
km ¼defE½ηikηjm�; ð27Þ

1 The spectral theorem [41] guarantees that the solutions to Eq. (11) are
orthonormal in L2ð½0; Tn�Þ. This does not obviously imply that their sub-components
are orthogonal as well.
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we obtain from Eq. (26) the cross-covariances

Cijðs; tÞ ¼ E½f iðs;ωÞf jðt;ωÞ�

¼ ∑
1

k;m ¼ 1
Kij
km

ffiffiffiffiffiffiffiffiffiffiffi
γikγ

j
m

q
ψ i

kðsÞψ j
mðtÞ: ð28Þ

The correlation constants Kij
km in Eq. (27) can be determined by

projecting the kernels Cijðs; tÞ onto the eigenfunction set of each
random process. This yields (see also [1])

Kij
km ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

γikγ
j
m

q Z T

0

Z T

0
Cijðs; tÞψ i

kðsÞψ j
mðtÞ ds dt: ð29Þ

Let K be the block matrix

K ¼def
I K12 ⋯ K1n

K21 I ⋯ K2n

⋮ ⋮ ⋱ ⋮
Kn1 Kn2 ⋯ I

2
66664

3
77775; ð30Þ

where I is the identity matrix and Kij is the matrix defined in
Eq. (29). Note that, in general, K is symmetric but not necessarily
positive definite. We will revisit this issue in Section 3.2.

The next question is how to obtain the random variables
fηikðωÞg in Eq. (26) from Kij

km. To this end, let

η¼def
fη1k ðωÞg
fη2k ðωÞg

⋮
fηnk ðωÞg

2
66664

3
77775 ð31Þ

be a correlated random vector collecting all random variables
fηikðωÞg in which the processes (26) are expanded. In order to
generate realizations η we assume that K is positive definite and
perform a Cholesky decomposition in the form K ¼ RRT . Then we
transform the random variables as ~η ¼ R�1η. This yields E½ ~η ~ηT � ¼ I,
i.e., the random vector ~η has uncorrelated components. Thus, in
order to represent our processes we can first consider a set of
uncorrelated random variables ~η and then transform them into
the specified correlated set η by simply applying R to ~η.2 The
eigenfunctions ψ i

kðtÞ in (26) can be transformed as well by
applying R to the right. In fact, if we denote by Ψ ðtÞ the vector
collecting the eigenfunctions of all the auto-covariances, then we
have ~Ψ ðtÞ ¼Ψ ðtÞR.

The series expansions (26) obtained in this way satisfy the
correlation structure (28). Similar expansions have been obtained
by Vořechovský [34], by directly imposing the correlation con-
stants rather than considering their expression in terms of cross-
covariance kernels. The truncation error of the mcKL series can be
defined as the summation of the error in each covariance kernel

ɛ
Cij

Mij
¼def 1
‖Cijðs; tÞ‖1

Z T

0

Z T

0
Cijðs; tÞ
��

� ∑
Mi

k ¼ 1
∑
Mj

m ¼ 1
Kij
km:

ffiffiffiffiffiffiffiffiffiffiffi
γikγ

j
m

q
ψ i

kðsÞψ j
mðtÞj ds dt: ð32Þ

2.2.1. Analytical results for exponentially correlated processes
The eigenvalues and eigenfunctions of integral operators in the

form (11) with exponential covariances (2) admit an analytical
expression [10,44]. In particular, let ci ¼ 1=τi, where τi is the

correlation length of the process f iðt;ωÞ. Then γik and ψ i
kðtÞ in

Eq. (26) are given by

γik ¼
2ci

w2
ikþc2i

ð33Þ

ψ i
kðtÞ ¼

1
Aik

wik

ci
cos ðwiktÞþ sin ðwiktÞ

� �
; ð34Þ

where wik (k¼ 1;2;…) are solutions to the transcendental equa-
tion ðw2

ik�c2i Þ tan ðwikTÞ�2ciwik ¼ 0 and

Aik ¼
1
2

1þw2
ik

c2i

 !
Tþ w2

ik

c2i
�1

 !
sin ð2wikTÞ

4wik

"

þ 1
2ci

ð1� cos ð2wikTÞÞ
�1=2

:

A substitution of Eqs. (33) and (34) into Eq. (29) yields the
following analytical expression for the cross-covariances:

Kij
km ¼ Bij0

km½B
ij1
kmþBij2

km cos ðwikTÞþBij3
km sin ðwikTÞ�

�½Bij4
kmþBij5

km cos ðwjmTÞþBij6
km sin ðwjmTÞ�;

where

Bij0
km ¼

c2ije
�T=cij

AikAjmcicjð1þc2ijw
2
ikÞð1þc2ijw

2
jmÞ

; cij ¼
1
τij
;

Bij1
km ¼ ð1þcicijÞeT=cijwik; Bij2

km ¼ �ð1þcicijÞwik;

Bij3
km ¼ �ciþcijw2

ik; Bij4
km ¼ ð�1þcjcijÞwjm;

Bij5
km ¼ ð1�cjcijÞeT=cijwjm; Bij6

km ¼ ðcjþcijw2
jmÞeT=cij :

Similar analytical results can be obtained for regularized expo-
nential covariances [45]. Clearly, the availability of analytical
results for the KL decomposition of each process fi significantly
reduces the computational cost of the mcKL method.

3. Numerical results

In this section we compare the proposed methods, i.e., muKL
and mcKL (see Table 1), in terms of accuracy and computational
cost. To this end, we consider multi-correlated random processes
with both stationary and non-stationary covariances (2)–(5) in the
time interval ½0;1�. Unless otherwise stated, we set Di¼1, for all i.
We first consider two exponentially correlated processes, f 1ðt;ωÞ
and f 2ðt;ωÞ. Several realizations (sample paths) of these processes
are shown in Fig. 1 for τ1 ¼ 0:2, τ2 ¼ 1 and different cross-
correlation lengths and amplitudes D12. The truncation dimension
in the muKL and mcKL series expansions (see Eqs. (22)–(32)) is set
to M¼50 and M1 ¼M2 ¼ 25, respectively. It is seen that, as we
increase the cross-correlation length and amplitude the samples of
f1 and f2 are more and more correlated, i.e., they tend to follow the
same trend.

Imposing a cross-covariance between f1 and f2 results in
different effects in muKL and mcKL expansions. In particular, in
the muKL framework the cross covariance structure affects the
basis functions ϕðiÞ

k in Eq. (14). On the other hand, in the mcKL
framework the cross-covariance affects the correlation coefficients
(29). Specifically, if the cross-correlation length is non-zero we see
that several cross-correlation coefficients are activated (see Fig. 2).

Next, we compare muKL and mcKL methods in terms of
accuracy. To this end we consider two correlated random pro-
cesses with Gaussian covariances and cross-covariance. First of all,
we examine the L2 errors (21) and (32) as a function of the number
of expansion terms M, and verify convergence of both muKL and
mcKL expansions. This is done in Fig. 3 where we show the error of
the assembled covariance kernel for different values of τ1, fixed
τ2 ¼ τ12 ¼ 2, and M1 ¼M2 ¼M=2. It is seen that the error depends

2 We recall that correlated non-normal random variables can also be trans-
formed into a set of uncorrelated normal random variables by using Nataf
transformation [43]. This technique first transforms each non-normal random
variable into a normal random variable by using the inverse cumulative distribu-
tion function, and then apply the Cholesky decomposition to the correlation matrix
to convert them into uncorrelated variables.
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Fig. 1. Sample paths of two exponentially correlated random processes f 1ðt;ωÞ and f 2ðt;ωÞ generated by using muKL (first row) and mcKL (second row). Shown are results for
D1 ¼D2 ¼ 1, τ1 ¼ 0:2, τ2 ¼ 1 and different cross-covariance lengths τ12 and amplitudes D12. It is seen that the sample paths of f 2ðt;ωÞ tend to follow those of f 1ðt;ωÞ when τ12
and D12 increase.

Fig. 2. Absolute value of the cross correlation coefficients K12
km defined in Eq. (29). We see that for non-zero cross-correlation lengths τ12 several coefficients are activated.

Fig. 3. L2 error in the assembled Gaussian covariance ~C by using muKL (left) and mcKL (right) expansions. Shown are results for different correlation lengths τ1 and fixed
τ2 ¼ τ12 ¼ 2. Smaller correlation lengths require more random variables for a prescribed level of accuracy in both methods. However, muKL shows faster convergence and
smaller errors than mcKL.
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significantly on τ1. In particular, the convergence of the series
becomes slower as τ1 decreases. Despite the smaller error in the
first few dimensions of mcKL expansion, the convergence rate of
the muKL expansion is faster than the mcKL expansion and the
overall error is lower as well. The plateau observed in error plot of
the mcKL method for large M is due to the correlation coefficients
K12
ij , which remain of order 10�10 for large k.
In Table 2 we summarize the number of random variables in

muKL and mcKL expansions that yield 97% of the total energy of
the processes, i.e., M is the truncation dimension defined by the
condition ɛ

~C
Mo0:03. As expected, muKL achieves the same level of

accuracy by using less random variables than mcKL (see also
Fig. 3). This is particularly true for weakly correlated processes,
i.e. processes with small correlation length.

Next, we examine the error of exponentially correlated pro-
cesses. This is done in Fig. 4, for the case τ1 ¼ 1, τ2 ¼ 0:1, τ12 ¼ 1.
Note that the error decays slower compared to the Gaussian case.
This is due to the fact that the exponential kernel is less smooth
than the Gaussian one [46]. Fig. 4 also emphasizes different
aspects in the decay of the covariance errors obtained by muKL
and mcKL. In fact, the error in the cross covariance ɛC12

M decreases
monotonically in mcKL, but not in muKL. Nevertheless, the total
error turns out to be smaller by using muKL.

We also apply muKL and mcKL methods to random processes
with non-stationary covariance functions. In particular, we con-
sider fractional Brownian motion (FBM) and Brownian bridge (BB)

processes (see Eqs. (4) and (5)). In Fig. 5 we show the assembled
covariances for the specific cases we consider here, i.e., FBM and
FBM/BB. The truncation dimensions for muKL and mcKL expan-
sions are set to M¼48 and M1 ¼ 36, M2 ¼ 12 in FBM, and to M¼54
and M1 ¼ 34, M2 ¼ 20 in FBM/BB. With these parameters the
absolute error in the representation of the covariances is less than
10�2 (see Fig. 6). Note that in both muKL and mcKL methods, the
maximum error occurs at the locations where the covariance
function is less smooth. In particular, the mcKL expansion exhibits
larger absolute and L2 errors in the cross-covariance function,
which is consistent with previous results.

3.1. Computational cost

The muKL method requires solving an eigenproblem of size nN,
where N denotes the number instants discretizing the time
interval ½0; T �. Thus, the computational cost of muKL is Oðn3N3Þ.
On the other hand, the mcKL expansion involves n eigen-
decompositions of size N, i.e., OðnN3Þ. In addition, the projection
of the eigenfunctions has to be computed. The computational cost
of this operation is affected by the truncation dimensions M1 and
M2 of the expansions and n, i.e., we obtain OðMiMjn2N2Þ. In Fig. 7
we compare the computation time (in s) required by muKL and
mcKL to decompose n Gaussian correlated random processes with
τi ¼ 0:2 and τij ¼ 1:0. The expansions are truncated at M¼18n
(muKL) and Mi¼18 (i¼ 1;…;n) (mcKL).

Table 1
Summary of the algorithms for muKL and mcKL expansions.

muKL mcKL

1. Assemble the random processes ff 1 ;…; f ng and
the covariance function as in Eqs. (6)–(8)

1. Apply KL expansion to each process as in Eq. (26)

2. Apply KL expansion to the assembled process (9) 2. Compute the correlation coefficients that yield
the proper correlation structure (29)

3. Determine the basis function of each process and
represent it as in Eqs. (14) and (15)

3. Represent each process as in (26), where ηkj are

determined by a singular value decomposition of (30)

Table 2
Number of random variables to achieve a truncation error smaller than 3%. The correlation lengths of the processes f1 and f2 are set as τ1 ¼ τ,
τ2 ¼ 2τ, τ12 ¼ 2τ. We see that the muKL expansion requires less random variables than the mcKL expansion, in particular for small τ.

τ 1.0 0.2 0.1 0.05 0.02

M (muKL) 2 5 7 13 31
ðM1 ;M2Þ (mcKL) (2, 1) (3, 2) (6, 3) (11, 6) (25, 13)

Fig. 4. L2 errors in representing exponential covariances C1, C2, and C12 by using muKL (left) and mcKL (right). Here we set τ1 ¼ 1, τ2 ¼ 0:1, τ12 ¼ 1. Note that the error of C12
decreases monotonically in mcKL but not in muKL. The overall error is lower in muKL expansion.
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Fig. 6. Absolute errors of muKL (first row) mcKL (second row) in representing the assembled covariance functions shown in Fig. 5.

Fig. 7. (a) Computation time (in s) versus the number of random processes n; (b) computation time (in s) versus the number of degrees of freedom N in time domain
(number of equally spaced points within ½0;1�). The mcKL expansion is scalable and it requires less operations than the muKL.

Fig. 5. Left: Assembled covariance function of two fractional Brownian motion (FBM) processes with Hurst indices H1¼0.4 and H2¼0.7. The cross covariance is also of FBM-
type with H12 ¼ 0:5. Right: Assembled covariance of two FBM processes (H1¼0.4, H2¼0.5) with Brownian bridge (BB) cross-covariance. In both cases the correlation
amplitudes are set to D1 ¼ 1, D2 ¼ 1 and D12 ¼ 0:5.
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3.2. Constraints for positive-definiteness

Both muKL and mcKL have to satisfy a positive-definiteness
constraint. In fact, the assembled covariance function (8) in muKL
and the correlation matrix (30) of the random variables in mcKL
have to be positive-definite. In Fig. 8 we show the eigenvalues λk of
the assembled exponential covariance kernel (13) and the mini-
mum eigenvalue for different choices of the cross-correlation
length τ12 and fixed τ1 ¼ τ2 ¼ 0:1. The existence of negative
eigenvalues clearly indicates that the assembled covariance func-
tion is not always positive-definite. The minimum eigenvalue
becomes negative when the cross-correlation length is small

compared to the auto-correlation lengths of both processes.
In the present example, this happens when τ12r0:1, which
coincides exactly with the theoretical condition we obtained in
Eq. (25).

In Fig. 9, we plot the set of correlation lengths τ2 and τ12
satisfying the positive-definiteness condition for exponential and
Gaussian covariance kernels with τ1 ¼ 1. Note that the analytical
condition we obtained in Eq. (25) is in agreement with the
numerical results and it provides a lower bound for τ12, given τ2.
We also study the positive-definiteness constraint for three ran-
dom processes. This is done in Fig. 10 where we plot the level
sets of the cross-correlation lengths τ13 and τ23 for which the

Fig. 8. (a) Eigenvalues λk of the assembled covariance kernel in muKL. (b) Smallest eigenvalue as a function of the cross-correlation lengths τ12. Here we set τ1 ¼ τ2 ¼ 0:1.
Note that all eigenvalues are positive for τ12Z0:1.

Fig. 9. Set of correlation lengths τ2 and τ12 satisfying the positive-definiteness condition (circles) for τ1 ¼ 1. We consider exponential covariance kernels in (a) and (b) and
Gaussian covariance kernels in (c) and (d). In (a) and (c) we employ muKL while in (b) and (d) mcKL. The line denotes the theoretical constraint in Eq. (25) of the muKL
expansion. We notice that not only muKL, but also mcKL satisfies a similar constraint.

H. Cho et al. / Probabilistic Engineering Mechanics 34 (2013) 157–167164



minimum eigenvalue of the assembled correlation is negative.
Specifically we set τ1 ¼ 1, τ2 ¼ 2 and τ12 ¼ 5 and consider different
values of τ3. It is seen that the conditions in Eq. (25) still represent
lower bounds for the cross-correlation lengths.

3.3. Comparison with moPPCA

In the multiple version of the probabilistic principal compo-
nent analysis (moPPCA) [32] we look for a representation of
multiple random processes in terms of a linear combinations of
random variables. Therefore this method shares similar character-
istics with the proposed mcKL. However, differently from mcKL,
moPPCA assumes that all the random variables representing the
processes are independent, while mcKL expansion drops such an
assumption to impose cross-correlation. Therefore we expect that
moPPCA cannot properly represent cross-correlated processes. In
order to show this we consider two exponentially correlated
random processes f 1ðt;ωÞ and f 2ðt;ωÞ having correlation lengths
τ1 ¼ 0:2, τ2 ¼ 1:0, and τ12 equal to 0 and 1.2 as in Fig. 1. In Fig. 11
we compare the basis functions of f 1ðt;ωÞ as computed by mcKL
and moPPCA. Note that the results of the two methods coincide
when f1 and f2 are uncorrelated (τ12 ¼ 0). Also, the eigenfunctions
computed by moPPCA are insensitive to changes in τ12. This
suggests that moPPCA cannot represent cross-correlated random
processes.

4. Application to a tumor cell growth model

Many recent studies aim at developing simple models of
complex systems based on empirical or historical data [21,22,47].
This is the case, for example, of biological models described in
terms of stochastic differential [48,49]. The muKL and mcKL
methods can be applied in these contexts to find an appropriate
representation of the random input processes, provided we have
available their correlation structure, e.g., from empirical data. Let
us illustrate the procedure with specific reference to the tumor
growth model recently studied by Zeng and Wang [49]. The
governing equation is

_xðt;ωÞ ¼ GðxÞþgðxÞf 1ðt;ωÞþ f 2ðt;ωÞ
xð0;ωÞ ¼ x0ðωÞ

(
ð35Þ

where xðt;ωÞ denotes the tumor cell population at time t

GðxÞ ¼defxð1�θxÞ�β
x

xþ1
; gðxÞ ¼def � x

xþ1
; ð36Þ

β is the immune rate, and θ is related to the rate of growth
of cytotoxic cells. The random process f 1ðt;ωÞ represents the
strength of the treatment (i.e., the dosage of the medicine in
chemotherapy or the intensity of the ray in radiotherapy) while
the process f 2ðt;ωÞ is related to other factors, such as drugs
and radiotherapy, that restrain the number of tumor cells. The

Fig. 10. Three Gaussian random processes. Level sets of the cross-correlation lengths τ13 and τ23 for which the minimum eigenvalue of the assembled covariance is zero. In
particular, we set τ1 ¼ 1, τ2 ¼ 2 and τ12 ¼ 5 and consider different τ3. Shown are results of muKL (a) and mcKL (b). The thin dashed lines are the analytical constraints in
Eq. (25).

Fig. 11. Basis functions ψ1
1ðtÞ, ψ1

2ðtÞ and ψ1
5ðtÞ (denoted as 1, 2 and 5 for notational convenience) as computed by mcKL and moPPCA. Note the results of two methods coincide

when f1 and f2 are uncorrelated (τ12 ¼ 0). Also, the eigenfunctions computed by moPPCA are insensitive to changes in τ12. This suggests that moPPCA cannot represent cross-
correlated random processes.
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parameters β, θ and the covariance structure of the random
processes f1 and f2 are usually estimated by using empirical
data. In the present paper, we assume that f 1ðt;ωÞ and f 2ðt;ωÞ
are cross-correlated Gaussian processes with zero mean and
Gaussian correlation functions given in Eq. (3). We also set
β¼ 2:26 and θ¼ 0:1. The initial condition x0ðωÞ for the tumor
density is assumed to be a standard Gaussian variable with mean
〈x0ðωÞ〉¼ 7:266 and unit variance. Such a mean value corresponds
to the state of stable tumor in the absence of random noise [49].
We represent the random forcing processes f1 and f2 by using both
the muKL or mcKL methods. This allows us to solve the stochastic
ODE (35) with a high-order probabilistic collocation method [50].
We also employ sparse collocation of level three [51] when the
number of random variables in the forcing terms exceeds four. In
Fig. 12 we show the mean and the standard deviation of the tumor
population xðt;ωÞ obtained by using mcKL expansions of random
forcing processes with different cross-covariance structure. The
dimension of each random process is at most 12 in all cases. When
we set D12 ¼ 0:3, the mean population decays slower with smaller
variance for smaller values of τ12. On the other hand, if we set
τ12 ¼ 1 and change D12, a similar phenomenon happens for larger
values of D12. The mean population decays much faster with
increasing variance when D12 is negative. Similar results are
obtained by using mcKL expansion. We conclude that the solution
of the tumor cell growth model is significantly affected by the
cross-covariance structure of the random input processes f1
and f2. Therefore it is of fundamental importance to have available

techniques, such as those developed in the present paper, capable
of representing effectively the correlation structure of multiple
random processes.

5. Summary

In this paper, we proposed two different methods to represent
multi-correlated non-stationary stochastic processes. The first
method (muKL) is based on the spectral decomposition of a
suitable assembled process and yields series expansions in terms
of an identical set of uncorrelated random variables. A similar
strategy has been proposed in the context of functional principal
component analysis by Ramsay and Silverman [35]. The second
method (mcKL) relies on expansions in terms of correlated sets of
random variables reflecting the cross-covariance structure of the
processes. In some sense, muKL can be regarded as a combination
of KL expansion and orthogonal polynomial methods [1]. A similar
idea was developed independently by Vořechovský [34], but the
method is restricted to the case where the auto-covariances are
identical. We demonstrated the effectiveness and the computa-
tional efficiency of the proposed algorithms through numerical
examples involving Gaussian processes with exponential and
Gaussian covariances as well as fractional Brownian motion and
Brownian bridge processes. We found that muKL usually provides
better accuracy and convergence rates but it is computationally
more expensive than mcKL. The latter approach yields scalable

Fig. 12. Mean (first row) and standard deviation (second row) of the tumor population. The covariance kernels of the random processes f1 and f2 are assumed to be Gaussian
with parameters τ1 ¼ τ2 ¼ 0:5, D1 ¼D2 ¼ 0:1, D12 ¼ 0:3 (left column) and τ1 ¼ τ2 ¼ 0:5, τ12 ¼ 1, D1 ¼D2 ¼ 0:1 (right column). Note that the statistical properties of tumor
population are significantly affected by the cross-covariance structure of the noise.
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algorithms and it can be applied to cases where the sets of random
variables in each process are different. We used muKL and mcKL
approaches to model and simulate cross-correlated random pro-
cesses in a stochastic tumor model and found that the response of
the system is significantly affected by the cross-correlation struc-
ture of the noise. More general applications to systems driven by
multiple correlated processes such as those arising in the stochas-
tic modeling of materials and devices can be readily done.
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