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In this paper we address the problem of computing the numerical solution to kinetic 
partial differential equations involving many phase variables. These types of equations 
arise naturally in many different areas of mathematical physics, e.g., in particle systems 
(Liouville and Boltzmann equations), stochastic dynamical systems (Fokker–Planck and 
Dostupov–Pugachev equations), random wave theory (Malakhov–Saichev equations) and 
coarse-grained stochastic systems (Mori–Zwanzig equations). We propose three different 
classes of new algorithms addressing high-dimensionality: The first one is based on 
separated series expansions resulting in a sequence of low-dimensional problems that can 
be solved recursively and in parallel by using alternating direction methods. The second 
class of algorithms relies on truncation of interaction in low-orders that resembles the 
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) framework of kinetic gas theory and it 
yields a hierarchy of coupled probability density function equations. The third class of 
algorithms is based on high-dimensional model representations, e.g., the ANOVA method 
and probabilistic collocation methods. A common feature of all these approaches is that 
they are reducible to the problem of computing the solution to high-dimensional equations 
via a sequence of low-dimensional problems. The effectiveness of the new algorithms is 
demonstrated in numerical examples involving nonlinear stochastic dynamical systems and 
partial differential equations, with up to 120 variables.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Kinetic equations are partial differential equations involving probability density functions (PDFs). They arise naturally in 
many different areas of mathematical physics. For example, they play an important role in modeling rarefied gas dynamics 
[1,2], semiconductors [3], stochastic dynamical systems [4–10], structural dynamics [11–13], stochastic partial differential 
equations (PDEs) [14–18], turbulence [19–22], system biology [23–25], etc. Perhaps, the most well-known kinetic equation 
is the Fokker–Planck equation [4,26,27], which describes the evolution of the probability density function of Langevin-type 
dynamical systems subject to Gaussian white noise. Another well-known example of kinetic equation is the Boltzmann 
equation [28] describing a thermodynamic system involving a large number of interacting particles [2]. Other examples that 
are may not be widely known are the Dostupov–Pugachev equations [7,10,11,29], the reduced-order Nakajima–Zwanzig–
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Table 1
Examples of kinetic equations arising in different areas of mathematical physics.
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Mori equations [16,30], and the Malakhov–Saichev PDF equations [17,14] (see Table 1). Computing the numerical solution 
to a kinetic equation is a very challenging task that involves several problems of different nature:

1. High-dimensionality: Kinetic equations describing realistic physical systems usually involve many phase variables. For 
example, the Fokker–Planck equation of classical statistical mechanics yields a joint probability density function in n
phase variables, where n is the dimension of the underlying stochastic dynamical system, plus time.

2. Multiple scales: Kinetic equations can involve multiple scales in space and time, which could be hardly accessible by 
conventional numerical methods. For example, the Liouville equation is a hyperbolic conservation law whose solution is 
purely advected (with no diffusion) by the underlying system’s flow map. This can easily yield mixing, fractal attractors, 
and all sorts of complex dynamics.

3. Lack of regularity: The solution to a kinetic equation is, in general, a distribution [32]. For example, it could be a multi-
variate Dirac delta function, a function with shock-type discontinuities [18], or even a fractal object (see Fig. 1 in [16]). 
From a numerical viewpoint, resolving such distributions is not trivial although in some cases it can be done by taking 
integral transformations or projections [33].

4. Conservation properties: There are several properties of the solution to a kinetic equation that must be conserved in time. 
The most obvious one is mass, i.e., the solution to a kinetic equation always integrates to one. Another property that 
must be preserved is the positivity of the joint PDF, and the fact that a partial marginalization still yields a PDF.

5. Long-term integration: The flow map defined by nonlinear dynamical systems can yield large deformations, stretching 
and folding of the phase space. As a consequence, numerical schemes for kinetic equations associated with such systems 
will generally loose accuracy in time. This is known as long-term integration problem and it can be eventually mitigated 
by using adaptive methods.

Over the years, many different techniques have been proposed to address these issues, with the most efficient ones 
being problem-dependent. For example, a widely used method in statistical fluid mechanics is the particle/mesh method 
[22,34–36], which is based directly on stochastic Lagrangian models. Other methods make use of stochastic fields [37]
or direct quadrature of moments [38]. In the case of Boltzmann equation, there is a very rich literature. Both probabilistic 
approaches such as direct simulation Monte Carlo [39,40], as well as deterministic methods, e.g., discontinuous Galerkin and 
spectral methods [41–43], have been proposed to compute the solution. Probabilistic methods such as direct Monte Carlo 
are extensively used because of their very low computational cost compared to finite-volumes, finite-differences or spectral 
methods, especially in the multi-dimensional case. However, Monte Carlo usually yields poorly accurate and fluctuating 
solutions, which need to be post-processed appropriately, for example through variance reduction techniques. We refer to 
Dimarco and Pareschi [31] for a recent review.

In our previous work [9], we addressed the lack of regularity and high-dimensionality (in the space of parameters) of 
kinetic equations by using adaptive discontinuous Galerkin methods [44,45] combined with sparse probabilistic collocation. 
Specifically, the phase variables of the system were discretized by using spectral elements on an adaptive non-conforming 
grid that track the support of the PDF in time, while the parametric dependence of the solution was handled by using 
sparse grids. However, the discontinuous Galerkin method we proposed in [9] is effective for phase spaces of dimension 
not exceeding three.

In this paper, we address the high-dimensional challenge in both of the phase space and parametric space by using 
different techniques, i.e., separated series expansion methods, Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) closures, 
and analysis of variance (ANOVA) approximations. The key idea of separated representations is to approximate a multi-
dimensional function in terms of series involving products of one-dimensional functions [46–49]. As we will see, this 
allows us to reduce the problem of computing the solution from high-dimensional kinetic equations to a sequence of 
one-dimensional problems that can be solved recursively and in parallel by using alternating direction algorithms, e.g., 
alternating least squares. The convergence rate of these algorithms with respect to the number of terms in the series expan-



H. Cho et al. / Journal of Computational Physics 305 (2016) 817–837 819
Fig. 1. Range of applicability of different numerical methods for solving kinetic equations as a function of the number of phase variables n and the number 
parameters m appearing in the equation. Shown in the upper right are: Separated series expansion methods (SSE – section 2.1), BBGKY closures (BBGKY 
– section 2.2), high-dimensional model representations (ANOVA – section 2.3), adaptive discontinuous Galerkin methods (DG) with sparse grids (SG) or 
tensor product probabilistic collocation (PCM) in the parameter space, direct simulation Monte Carlo (DSMC).

sion strongly depends on the kinetic equation as well as on its solution. For example, advection-dominated equations yield 
a rather slow convergence rate1 [49]. Alongside separated representation, we also investigate BBGKY type closures that 
rely on truncation of interaction in low-orders. Such an approach developed in kinetic gas theory [50] yields a hierarchy 
of coupled PDF equations for a given stochastic dynamical system. The third approach we consider is based on ANOVA 
approximation methods [51–54]. The basic idea is to represent multivariate PDFs in terms of series expansions involving 
functions with a smaller number of variables. For example, a second-order ANOVA approximation of a multivariate PDF in 
N variables2 is a series involving functions of at most two variables. All of these methods allow us to reduce the problem 
of computing high-dimensional PDF solutions to a sequence of problems involving low-dimensional PDFs. The range of ap-
plicability the proposed new approaches as well as and other numerical methods is sketched in Fig. 1 as a function of the 
number of phase variables n and the number of parameters m appearing in the kinetic equation.

This paper is organized as follows. In section 2, we present three different classes of new algorithms to solve high-
dimensional kinetic equations, i.e., the separated series expansion method (section 2.1), the BBGKY closure approximation 
(section 2.2), and the ANOVA series expansion method (section 2.3). The computational cost of these algorithms is discussed 
in section 3. In section 4, we apply the proposed new techniques to kinetic equations arising in nonlinear stochastic dynam-
ical system theory (Kraichnan–Orszag and Lorenz-96 systems) as well as to stochastic partial differential equations (random 
advection and random diffusion problems). Finally, the main findings are summarized in section 5. We also include a brief 
appendix dealing with the finite-dimensional representation of the alternating-direction Galerkin algorithms we propose in 
section 2.1.

2. Numerical methods

In this section we present three classes of algorithms to compute the numerical solution of high-dimensional kinetic 
equations, such as those summarized in Table 1. The first class is based on separated series expansions (SSE) and alter-
nating direction methods. The second class of algorithms relies on the BBGKY type approximation (BBGKY) and it yields a 
hierarchy of coupled probability density function equations. The third class is based on high-dimensional model representa-
tions (ANOVA) and probabilistic collocation methods. Hereafter we describe each method in detail.

2.1. Separated series expansions (SSE)

The method of separation of variables has been widely used to approximate high-dimensional functions in terms of 
low-dimensional ones. In particular, let us consider the following separated expansion of an N-dimensional probability 
density function

p(z1, · · · , zN) =
R∑

r=1

αr pr
1(z1)pr

2(z2) · · · pr
N(zN) + ε(z1, · · · , zN), (1)

where R is the separation rank, pr
j are one-dimensional functions, and ε is the residual. The total number of variables N

in equation (1) is the sum of the phase variables n and the number of parameters m appearing in the kinetic equation. 
Specific examples will be given in section 4. The main advantage of using a representation in the form (1) to solve a 
high-dimensional kinetic PDE relies on the fact that the algorithms to compute pr

j(z j) and the normalization factors αr

involve operations with one function at a time. Thus, in principle, the computational cost of such algorithms grows linearly 
with respect to the dimension N , potentially avoiding the curse of dimensionality.

1 The Liouville equation is a hyperbolic conservation law in which the diffusion term is completely absent (see Table 1). Therefore, the convergence rate 
of the separated representation of the solution is usually quite slow. On the other hand, fast convergence was observed for Fokker–Planck equations by 
Leonenko and Phillips [47].

2 In this paper, the total number of variables N is the sum of the number of phase variables n and the number of parameters m appearing in the kinetic 
equation, i.e., N = n + m.
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For time-dependent PDEs, we can still look for solutions in the form (1), where we simply add additional functions of the 
time variable in the separated series. This approach has been considered by several authors, e.g., [46,55], and it was shown 
to work well for problems dominated by diffusion. However, for complex transient problems (e.g., hyperbolic dynamics), 
such an approach is not practical as it requires a high resolution in time domain. To address this issue, a discontinuous 
Galerkin method in time was proposed by Nouy in [49]. The key idea is to split the integration period into small intervals 
(finite elements in time) and then consider a space–time separated representation of the solution within each interval. In 
this paper we follow a different approach, based on explicit or implicit time-integration schemes. In this case, the separated 
representation of the solution is computed at each time step. Let us formulate the method with reference to a linear kinetic 
equation in the form

∂ p(z, t)

∂t
= L(z)p(z, t), (2)

where z = (z1, . . . , zN ) is the vector of phase variables and L(z) is a linear operator. For instance, in the case of the Fokker–
Planck equation (see Table 1) we have m = 0 (i.e. N = n) and

L(z) = −
n∑

k=1

(
∂Gk(z)

∂zk
− Gk(z)

∂

∂zk

)
+ 1

2

n∑
i, j=1

(
∂2bij(z)

∂zi∂z j
+ bij(z)

∂2

∂zi∂z j

)
.

The time-discrete version of (2) can be easily obtained by applying, e.g., the Crank–Nicolson scheme. This yields

p(z, t j+1) − p(z, t j)

�t
= 1

2

(
L(z)p(z, t j+1) + L(z)p(z, t j)

)
, �t = t j+1 − t j,

i.e., (
I − 1

2
�tL(z)

)
p(z, t j+1) =

(
I + 1

2
�tL(z)

)
p(z, t j). (3)

Assuming that p(z, t j) is known, (3) is a linear equation for p(z, t j+1) which can be written concisely as3

A(z) p(z) = f (z), (4)

where

A(z)
.=
(

I − 1

2
�tL(z)

)
, f (z)

.=
(

I + 1

2
�tL(z)

)
p(z, t j). (5)

The system operator A(z) and the right-hand-side f (z) are assumed to be separable with respect to z, i.e.,

A(z) =
nA∑

k=1

Ak
1(z1) · · · Ak

N(zN), f (z) =
n f∑

k=1

f k
1 (z1) · · · f k

N(zN). (6)

Note that A(z) is separable if L(z) is separable. An example is the Liouville operator associated with the Kraichnan–Orszag 
problem (see subsequent equations (18a)–(18c) and (19))

L(z) = −z1z2
∂

∂z1
− z2z3

∂

∂z2
− (z2

2 − z2
1)

∂

∂z3
− (z2 + z3). (7)

More generally, systems with polynomial-type nonlinearities always yield separable Liouvillians L(z), and therefore separable 
A(z). At this point, we look for a separated representation of the solution to (4) in the form

pR(z) =
R∑

r=1

αr pr
1(z1) · · · pr

N(zN), (8)

and we try to determine αr , pr
j and the separation rank R based on the condition∥∥∥A(z)pR(z) − f (z)

∥∥∥ ≤ ε, (9)

in an appropriately chosen norm, and for a prescribed target accuracy ε. This problem does not admit a unique solution. In 
fact, there exist many possible choices of αr , pr

j(z j) and R that yield, in norm, the same target accuracy. Hence, different 
approaches exist to compute pr

j(z j) and αr . Hereafter, we focus our attention on alternating-direction Galerkin and least 
squares methods.

3 Note that in equation (4) we have omitted the time-dependence in p(z, t j+1) for notational convenience.
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Alternating direction algorithms
The basic idea of alternating direction methods is to construct the series expansion (8) iteratively, by determining pr

j(z j)

one at a time while freezing all other functions. This yields a sequence of low-dimensional problems that can be solved 
efficiently and in parallel [46–49,56–58]. To clarify how the method works in simple terms, suppose we have constructed an 
approximated solution to (4) in the form (8), i.e., suppose we have available pR(z). Then we look for an enriched solution 
in the form

pR(z) + r1(z1) · · · rN(zN),

where {r1(z1), . . . , rN(zN )} are N unknown functions to be determined. In the alternating direction method, such functions 
are determined iteratively, one at a time. Typical algorithms to perform such iterations are based on least squares,

min
r j

∥∥∥∥∥∥
nA∑

k=1

Ak
1 · · · Ak

N

(
pR + r1 · · · rN

)
−

n f∑
k=1

f k
1 · · · f k

N

∥∥∥∥∥∥
2

, (10)

or Galerkin methods〈
q,

nA∑
k=1

Ak
1 · · · Ak

N

(
pR + r1 · · · rN

)〉
=

〈
q,

n f∑
k=1

f k
1 · · · f k

N

〉
, (11)

where 〈·〉 is an inner product (multi-dimensional integral with respect to z), and q is a test function, often chosen as 
q(z) = r1(z1) · · · rN(zN ). In a finite-dimensional setting, the minimization problem (10) reduces to the problem of finding the 
minimum of a scalar function in as many variables as the number of unknowns we consider in each basis function r j (z j), say 
qz . Similarly, the alternating-direction solution to (11) is based on the iterated solution to a sequence of low-dimensional 
linear systems of size qz × qz . Note that if A(z) in Eq. (4) is a nonlinear operator, then we can still solve (10) or (11), 
e.g., by using Newton iterations. Once the functions {r1(z1), . . . , rN(zN )} are computed, they are normalized (yielding the 
normalization factor αR+1) and added to pR (z) to obtain pR+1(z). The separation rank is increased until (9) is satisfied for 
a desired target accuracy ε.

The enrichment procedure just described has been criticized in the literature due to its slow convergence, in particu-
lar for equations dominated by advection [49]. Depending on the criterion used to construct the separated expansion, the 
enrichment procedure might not even converge. Recent work, indeed, aimed at finding optimal bases with granted conver-
gence properties, i.e., bases that minimize the separation rank and simultaneously keep the overall error (9) bounded by ε. 
For example, Doostan and Iaccarino [59] proposed an alternating least-square algorithm that updates simultaneously the 
entire rank of the basis set in the j-th direction. In this formulation, the least square approach (10) becomes

min{
p1

j ,...,pR
j

}
∥∥∥∥∥∥

nA∑
k=1

Ak
1 · · · Ak

N

(
R∑

r=1

αr pr
1 · · · pr

N

)
−

n f∑
k=1

f k
1 · · · f k

N

∥∥∥∥∥∥
2

.

The computational cost of this method clearly increases compared to (10). In fact, in a finite dimensional setting, the 
simultaneous determination of 

{
p1

j , . . . , pR
j

}
requires the solution of a Rqz × Rqz linear system, where qz is the number of 

degrees of freedom for each pr
j(z j). However, this algorithm usually results in a separated solution with a lower separation 

rank R than the regular approach.
Hereafter, we propose a new alternating direction Galerkin method that, as before, updates the entire rank of the basis 

set in the j-th phase variable simultaneously. To this end, we generalize the Galerkin formulation (11) to〈
q,

nA∑
k=1

Ak
1 · · · Ak

N

(
R∑

r=1

αr pr
1 · · · pr

N

)〉
=

〈
q,

n f∑
k=1

f k
1 · · · f k

N

〉
, (12)

where q(z) = span{pr
1(z1) · · · pr

N (zN ) }R
r=1. In addition, we employ an adaptive strategy to determine the separation rank 

based on the spectrum α = {α1, . . . , αR} of the separated series. The adaptive criterion is simple and effective:

• We increase the separation rank R if the ratio αR/α1 exceeds a threshold θ .

The finite-dimensional representation of (12) and the summary of the algorithm is discussed in Appendix A and Table 3, 
respectively.
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2.2. BBGKY closures

In addition to the separated series expansion method discussed in the previous section, we propose here a BBGKY type 
closure to further reduce the dimensionality of a kinetic equation. Let us introduce the method with reference to a nonlinear 
dynamical system in the form

dx(t)

dt
= Q(x, ξ , t), x(0) = x0(ω), (13)

where x(t) ∈ Rn is a multi-dimensional stochastic process, ξ ∈ Rm is a vector of random variables, Q : Rn+m+1 → Rn is a 
Lipschitz continuous (deterministic) function, and x0 ∈ Rn is a random initial state. Upon definition of y(t) = (x(t), ξ), we 
can rewrite (13) as

dy(t)

dt
= G(y, t), y(0) = (x0(ω), ξ (ω)), G(y, t) =

[
Q(y, t)

0

]
. (14)

Note that y(t) ∈ RN and G : RN+1 →RN , where N = n + m. The joint PDF of y(t) evolves according to the Liouville equation

∂ p(z, t)

∂t
+ ∇ · [G(z, t)p(z, t)] = 0, z ∈RN , (15)

whose solution can be computed numerically only for small N . This leads us to look for PDF equations involving only a 
reduced number of phase variables, for instance, the PDF of each component yi(t). The derivation relies on the functional 
integral form of the PDF py(z, t) = ∫ ∏N

i=1 δ(zi − yi(x0, ξ ; t))w(x0, ξ)dx0 dξ , where w(x0, ξ) is the joint PDF of the initial 
random variables and the parameters x0 and ξ . Then, by differentiating both sides with respect to t , the PDF of a single 
component yi(t) satisfies4

∂ pi(zi, t)

∂t
= − ∂

∂zi

∫
[ ẏi(t)δ(zi − yi(t))w(x0, ξ)] dx0 dξ

= − ∂

∂zi

∫
[Gi(y, t)δ(zi − yi(t))p(y, t)] dy (16)

where p(y, t) is the full joint PDF of y(t). Similarly, the joint PDF of yi(t) and y j(t) (i �= j) satisfies

∂ pij(zi, z j, t)

∂t
= − ∂

∂zi

∫ [
Gi(y, t)δ(zi − yi(t))δ(z j − y j(t))p(y, t)

]
dy

− ∂

∂z j

∫ [
G j(y, t)δ(zi − yi(t))δ(z j − y j(t))p(y, t)

]
dy. (17)

Higher-order PDF equations can be derived similarly. Unfortunately, the computation of the integrals in (16) and (17) re-
quires the full joint PDF of y(t), which is available only if we solve the Liouville equation (15). As mentioned before, 
this is not feasible in practice even for a low number of variables. Therefore, we need to introduce approximations. 
The most common one is to assume that the joint PDF p(z, t) can be written in terms of lower-order PDFs, e.g., as 
p(z, t) = p1(z1, t) · · · pN (zN , t). By using integration by parts, this assumption reduces the Liouville equation to a hierar-
chy of one-dimensional PDF equations (see, e.g., [16]).

Hereafter we follow a similar approach based on lower order PDFs at least in second order. The idea is to approximate 
the dynamics in the i-th direction by primarily using the correlation to the i-th variable. If Gi is a function of zi and z j , the 
right-hand-side of (17) becomes

− ∂

∂zi

∫ [
Gi(y, t)δ(zi − yi(t))δ(z j − y j(t))p(y, t)

]
dy = − ∂

∂zi

[
Gi(zi, z j, t)pij(zi, z j, t)

]
.

Otherwise, we approximate the equation by using the joint PDFs pik(zi, zk) for k �= i. To this end, let us consider a specific 
form of Gi that allows us to simplify the equations, i.e.,

Gi(y, t) = gii(yi, t) +
N∑

k=1
k �=i

gik(yi, yk, t).

The integrals in the right hand side of the one-point PDF equation (16) can be now computed exactly as

∂ pi

∂t
= − ∂

∂zi

⎡⎣gii(zi, t)pi +
N∑

k �=i

∫
gik(zi, zk, t)pikdzk

⎤⎦ ,

4 Note that pi(zi , t) = p(ξi) for all n + 1 ≤ i ≤ n + m, and for all t ≥ 0.
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where pi = p(zi, t) and pik = p(zi, zk, t). On the other hand, we approximate the integrals in the two-points PDF equations 
(17) as

∂ pij

∂t
= − ∂

∂zi

⎡⎣(
gii(zi, t) + gij(zi, z j, t)

)
pij +

⎛⎝ N∑
k �=i, j

∫
gik(zi, zk, t)pikdzk

⎞⎠ p j

⎤⎦
− ∂

∂z j

⎡⎣(
g jj(z j, t) + g ji(z j, zi, t)

)
pij +

⎛⎝ N∑
k �=i, j

∫
g jk(z j, zk, t)p jkdzk

⎞⎠ pi

⎤⎦ ,

where we discarded all contributions from the three-points PDFs and the two-points PDFs except the ones interacting with 
the i-th variable. A variance-based sensitivity analysis in terms of Sobol indices [60–62] can be performed to identify the 
system variables with strong correlations. This allows us to determine whether it is necessary to add the other two-points 
correlations or the three-points PDF equations for a certain triple {xk(t), xi(t), x j(t)}, and to further determine the equation 
for a general form of Gi .

An example: the Kraichnan–Orszag problem
Let us apply the BBGKY type closure we described in the previous section to the Kraichnan–Orszag problem studied in 

[63]

dx1

dt
= x1x3, (18a)

dx2

dt
= −x2x3, (18b)

dx3

dt
= −x2

1 + x2
2. (18c)

In this case we have n = 3 phase variables and m = 0 parameters, i.e., a total number of N = 3 variables. The three-
dimensional Liouville equation for the joint PDF of {x1(t), x2(t), x3(t)}, is

∂ p

∂t
+ z1z2

∂ p

∂z1
− z2z3

∂ p

∂z2
+ (z2

2 − z2
1)

∂ p

∂z3
= (−z2 + z3)p, (19)

where p = p(z1, z2, z3, t). On the other hand, by using the second-order BBGKY closure described in the previous section, 
we obtain the following hierarchy of PDF equations

∂ p1

∂t
= − ∂

∂z1

[
z1 〈x3〉3|1

]
, (20a)

∂ p2

∂t
= − ∂

∂z2

[−z2 〈x3〉3|2
]
, (20b)

∂ p3

∂t
= − ∂

∂z3

[(
−〈x2

1〉1|3 + 〈x2
2〉2|3

)]
, (20c)

∂ p12

∂t
= − ∂

∂z1

[
z1 〈x3〉3|1 p2

]+ ∂

∂z2

[
z2 〈x3〉3|2 p1

]
, (20d)

∂ p13

∂t
= − ∂

∂z1
[z1z3 p13] + ∂

∂z3

[
z2

1 p13 − 〈x2
2〉2|3 p1

]
, (20e)

∂ p23

∂t
= ∂

∂z2
[z2z3 p23] + ∂

∂z3

[
〈x2

1〉1|3 p2 − z2
2 p23

]
, (20f)

where

〈 f (x)〉i| j
.=
∫

f (z)pij(zi, z j, t)dzi . (21)

Let us assess the accuracy of the second-order BBGKY closure (20a)–(20f) when the initial condition {x1(0), x2(0), x3(0)}
is jointly Gaussian

p(z1, z2, z3, t = 0) = 103

(2π)3/2
exp

[
−50

(
z1 − 1

10

)2

− 50
(

z2
2 + z2

3

)]
. (22)

Each PDF equation is discretized by using a Fourier spectral collocation method with qz = 50 degrees of freedom in each 
variable. Time stepping is based on explicit fourth-order Runge–Kutta scheme with �t = 10−3. In Fig. 2, we compare the PDF 
of x1(t) and x2(t) as computed by the full system and the two-points BBGKY closure. We observe that the two solutions 
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Fig. 2. Kraichnan–Orszag problem: PDF of x1(t) (a) and x2(t) (b) at t = 4 and t = 8. Blue lines: results from the full Liouville equation. Green and red dashed 
line: results of the BBGKY closure (20a)–(20f) at t = 4 and t = 8, respectively. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 3. Kraichnan–Orszag problem: Absolute error in the mean (a) and in the standard deviation (b) of xk(t) (k = 1, 2, 3) computed by the two-points BBGKY 
closure (20a)–(20f).

are basically superimposed, suggesting that the effects of the three-points correlations are negligible. We also remark that if 
we are interested only in the PDF of one variable, then it is not necessary to solve the whole hierarchy of PDF equations in 
the BBGKY closure. For example, to obtain the PDF of x1(t), we can just solve Eqs. (20a), (20e), and (20f). In Fig. 3, we plot 
the absolute error in the mean and the standard deviation of {x1(t), x2(t), x3(t)} as computed by the BBGKY closure. These 
errors arise because we are not including the three-points PDFs in the hierarchy of equations.

We also emphasize that the PDF equation of a phase space function h(x1, x2, x3), can be easily derived based on the 
BBGKY closure. For example, the PDF equation of h = x1(t) + x3(t) is

∂ ph(z)

∂t
= − ∂

∂z

[(
−z2 + 3z〈x3〉3|h − 2〈x2

3〉3|h + 〈x2
2〉2|h

)
ph(z)

]
.

2.3. ANOVA series expansions

The ANOVA series expansion [53,64] is another typical approach to model high-dimensional functions. The series involves 
a superimposition of functions with an increasing number of variables, and it is usually truncated at a certain interaction 
order. Specifically, the ANOVA expansion of an N-dimensional PDF takes the from [65]

p(z1, z2, . . . , zN) = q0 +
N∑

i=1

qi(zi) +
N∑

i< j

qi j(zi, z j) +
N∑

i< j<k

qi jk(zi, z j, zk) + · · · . (23)

The function q0 is a constant. The functions qi(zi), which we shall call first-order interaction terms, give us the overall 
effects of the variables zi in p as if they were acting independently of the other variables. The functions qij(zi, z j) describe 
the interaction effects of the variables zi and z j , and therefore they will be called second-order interactions. Similarly, 
higher-order terms reflect the cooperative effects of an increasing number of variables. The interaction terms qijk··· can be 
computed in different ways [66,67], e.g.,
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q0 =
∫

p(z1, · · · , zN)dz1, · · ·dzN ,

qi(zi) =
∫

p(z1, · · · , zN)

N∏
k=1
k �=i

dzk − q0,

qij(zi, z j) =
∫

p(z1, · · · , zN)

N∏
k=1

k �=i, j

dzk − q0 − qi(zi) − q j(z j),

· · · .
By using the ANOVA expansion we can represent both the parametric dependence as well as the dependence on phase 
variables in the solution to a kinetic equation. In the first case, the ANOVA approach can be readily applied to the proba-
bilistic collocation method with appropriate anchor points [64,54,68,52,62], where we take the anchor points as the mean 
value of the random variable in each direction. Then, the PDF equations in Table 1 can be solved at the reduced number 
of collocation points in the parametric space according to the ANOVA decomposition. On the other hand, representing the 
dependence of the solution PDF on the phase variables through the ANOVA expansion yields a hierarchy of coupled PDF 
equations that resembles the BBGKY closures we presented in section 2.2. However, we comment that the BBGKY closure is 
more convenient than the ANOVA approach due to its less intrusive derivation.

3. Computational cost

Let us consider a kinetic partial differential equation with n phase variables and m parameters, i.e., a total number of 
N = n + m variables. Suppose that we represent the solution by using qz degrees of freedom5 in each phase variable and qb
degrees of freedom in each parameter. Thus, by using a regular tensor product, the number of degrees-of-freedom becomes 
qz

n qb
m and the computational cost grows exponentially as O (qz

2n qb
m). If we consider the sparse grid collocation for the 

parametric space, the cost reduces to a logarithmic growth in m, but still suffers from the curse of dimensionality. Hereafter, 
we compare the computational cost of the methods we discussed in the previous sections that reveal less computational 
complexity.

ANOVA series expansion and BBGKY closures
If we consider the ANOVA expansion or the BBGKY hierarchy, the computational complexity has a factorial dependence 

on the dimensionality n + m and the interaction orders of the variables ν . In particular, the number of degrees-of-freedom 
assuming that qb = qz becomes 

∑ν
s=1 C(n + m, s, qz), where

C(N, s,qz)
def= qz

s
(

N
s

)
. (24)

Regarding the matrix–vector operations for the discretized variables in each level, the computational cost follows as 
O  
(
C(n + m, ν,qz

2ν)
)
. Let us describe the cost in detail by considering the phase space and the parameter space separately. 

When high-dimensionality only appears in the parameter space, the probabilistic collocation ANOVA method can be com-
bined with the tensor product in the phase space. In that case, the degree of freedom and the computational cost becomes 
qz

n ∑ν
s=1 C(m, s, qb) and O (q2n

z C(m, ν, qb
ν)). On the other hand, if the phase space is in high-dimension, the application of 

the BBGKY closure will reduce the computational cost to O  
(
C(n, ν,qz

ν)qb
m
)
. Finally, we remark that instead of consider-

ing the BBGKY closure in the entire space, it is reasonable to combine it with the ANOVA approach for further accuracy, 
since the interaction order of the phase variables and the parameters, denoted as ν and ν ′ , can be controlled separately. In 
this case, the number of degrees-of-freedom and the computational cost becomes 

(∑ν
s=1 C(n, s,qz)

) (∑ν ′
s=1 C(m, s,qb)

)
and 

O  
(

C(n, ν,qz
ν) C(m, ν ′,qb

ν ′
)
)

. The computational costs of these methods are summarized in Table 2.

Separated series expansion (SSE)
The total number of degree of freedoms in the SSE method is Rnqz + Rmqb , i.e., it grows linearly with both n and m

(see Table 2). In particular, if the separation rank R is relatively small then the separated expansion method is much more 
efficient than tensor product, sparse grid or ANOVA approaches, both in terms of memory requirements as well as in terms 
of computational cost. The alternating-direction algorithm at the basis of the separated series expansion method can be 
divided into two steps, i.e., the enrichment and the projection steps (see Table 3). For a separation rank r, the number of 
operations to perform these steps is O (rqz

2 + (rqz)
3). Since we begin from the first basis vector and gradually increase the 

separation rank, this cost has to be summed up to r = 1, . . . , R , and finally multiplied by the average number of iterations 
nitr required to achieve the target accuracy ε. The computational cost of the projection step can be neglected with respect 

5 In a spectral collocation setting, qz is the number of collocation points in each phase variable.



826 H. Cho et al. / Journal of Computational Physics 305 (2016) 817–837
Table 2
Number of degrees-of-freedom and computational cost of solving kinetic equations by using 
different methods. Shown are results for ANOVA method, BBGKY closures, and Separated Series 
Expansion (SSE). In the table, n and m denote the number of phase variables and parameters 
appearing in the kinetic equation, respectively. We are assuming that we are representing the 
PDF solution with qz degrees of freedom in each phase variable and qb in each parameter. 
Also, R is the separation rank and niter is the average number of iterations required for con-
vergence of the separated expansion. The quantity ν is the interaction order of the ANOVA 
expansion or the BBGKY closure in the PDF solution.

Degrees of freedom Computational Cost

ANOVA qz
n ∑ν

s=1 qb
s
(m

s

)
O
(
qz

2nqb
2ν
(m
ν

))
BBGKY

∑ν
s=1 qz

s
(n+m

s

)
O
(
qz

2ν
(n+m

ν

))
SSE R nqz + R mqb O

(
R4 nqz

3 + R4 mqb
3
)

nitr

to the one of the enrichment step, as it reduces to solving a linear system of rather small size (R × R). Thus, the overall 
computational cost of the separated expansion method can be estimated as O  

(
R4nqz

3 + R4mqb
3
)

nitr , and it can be reduced 
to O  

(
R3nqz

2 + R3mqb
2
)

nitr by using appropriate iterative linear solvers.

4. Numerical results

In this section we provide numerical examples to demonstrate the effectiveness of the numerical methods we proposed 
in the paper. To this end, we will consider kinetic partial differential equations corresponding to stochastic PDEs as well as 
stochastic dynamical systems.

4.1. Stochastic advection of scalar fields

We consider the following two stochastic advection equations

∂u

∂t
+

(
1 +

m∑
k=1

1

2k
sin(kt)ξk(ω)

)
∂u

∂x
= 0, (25)

∂u

∂t
+ ∂u

∂x
= sin(t)

m∑
k=1

1

5(k + 1)
sin((k + 1)x)ξk(ω), (26)

where x ∈ [0, 2π ] and {ξ1, . . . , ξm} are i.i.d. uniform random variables in [−1, 1]. As we have shown in [17], the kinetic 
equations governing the joint probability density function of {ξ1, . . . , ξm} and the solution to (25) or (26) are, respectively,

∂ p

∂t
+

(
1 +

m∑
k=1

1

2k
sin(kt)bk

)
∂ p

∂x
= 0, (27)

∂ p

∂t
+ ∂ p

∂x
= −

(
sin(t)

m∑
k=1

1

5(k + 1)
sin((k + 1)x)bk

)
∂ p

∂z
, (28)

where p = p(x, t, z, b), b = {b1, . . . , bm}. Note that this PDF depends on x, t , one phase variable z (corresponding to u(x, t)) 
and m parameters b (corresponding to {ξ1, . . . , ξm}). The analytical solutions to Eqs. (27) and (28) can be obtained by using 
the method of characteristics [69]. They are both in the form

p (x, t, z,b) = p0 (x − X(t,b), z − Z(x, t,b),b) , (29)

where p0 (x, z, b) is the initial joint PDF of u(x, t0) and {ξ1, . . . , ξm}, and

X(t,b) = t −
m∑

k=1

(cos(kt) − 1)bk

2k2
, Z(x, t,b) = 0

in the case of equation (27), and

X (t,b) = t, Z (x, t,b) =
m+1∑
k=2

bk−1

10k

(
sin(kx − t)

k − 1
− sin(kx + t)

k + 1
− 2 sin(k(x − t))

(k − 1)(k + 1)

)
in the case of equation (28). In particular, in our simulations we set

p0(x, z,b) =
(

sin2(x)

2πσ1
exp

[
− (z − μ1)

2

2σ1

]
+ cos2(x)

2πσ2
exp

[
− (z − μ2)

2

2σ2

])
exp

[
−|b|2

2

]
,
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Fig. 4. Stochastic advection problem: separated series expansion modes on the physical and response space, that is, pr
x(x)pr

z(z) at t = 2. (For interpretation 
of the colors in this figure, the reader is referred to the web version of this article.)

which has separation rank R = 2. Non-separable initial conditions can be approximated in terms of series expansions in the 
form (1). We consider high-dimensional parametric space for m = 3, 13, 24, 54, 84, 114 and compare the SSE algorithm 
and the ANOVA decomposition that work efficiently for this type of problems.

We computed the solution to (27) and (28) by using a separated series expansion and the ANOVA expansion. The 
alternating-direction Galerkin method proposed in section 2.1 computes the solution in the form

p(x, t, z,b) 

∑

r

αr(t)pr
x(x)pr

z(z)pr
1(b1) · · · pr

m(bm), (30)

where the dependence on x and z is represented by using a Fourier spectral collocation method with qz = 50 degrees of 
freedom in each variable, while the parametric dependence on bk (k = 1, .., m) is represented with probabilistic collocation 
method based on the Legendre polynomials of order6 qb = 7. On the other hand, the solution considering the ANOVA 
expansion in the excitation space is in the form

p(x, t, z,b) 
 q0(x, z) +
m∑

i=1

qi(x, z)qb
i (bi) +

m∑
i< j

qi j(x, z)qb
i j(bi,b j) + · · · . (31)

The solutions (30) and (31) are computed at each time step (�t = 10−2) up to t = 3 by using the Crank–Nicolson scheme 
(4) and the second-order Runge–Kutta, respectively.

In Fig. 4, we plot the first few modes pr
x(x)pr

z(z) of the separated series solution to Eqs. (27) and (28) with m = 54
and m = 3, respectively. In the case of Eq. (27), pr

x(x)pr
z(z) look very similar to each other for r ≥ 2, while in the case 

of Eq. (28) they are all different, suggesting the presence of modal interactions and a larger separation rank to achieve a 
prescribed target accuracy. This is also seen in Fig. 5, where we plot the normalization coefficients {α1, . . . , αR}. Since αr

can be interpreted as the spectrum of the separated PDF solution, we see that the stochastic advection problem (26) yields 
a stronger coupling between the modes, i.e., a slower spectral decay than the problem (25).

6 The number of degrees-of-freedom of the discretized space should be chosen carefully to balance the errors between the space and time discretization 
and the truncation of the separated series. By considering qb = 7 in this example, the error is dominated by the truncation of the separation rank.
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Fig. 5. Stochastic advection problem: spectra of the separated series expansion at t = 2.

Fig. 6. Stochastic advection problem (25): PDF of the solution at different times. The PDF dynamics is obtained by solving (27) with a separated series 
expansion. The separation rank is set to R = 8, and we consider m = 54 random variables in (25). (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

Fig. 7. Stochastic advection problem (25): relative L2 errors of using the full tensor product (PCM), the separated series expansion (SSE), and the ANOVA 
approach (PCM-A, level 2) with respect to the analytical solution (29). Shown are results at t = 0.5, t = 1 and t = 3 for different separation ranks R and 
different number of random variables: m = 3 (a) and m = 54 (b).

In Fig. 6, we plot the PDF of the solution to Eq. (25). Such a PDF is obtained by first solving (27) by using the separated 
expansion method, and then integrating (30) numerically with respect to {b1, . . . , bm}. Convergence with respect to R is 
demonstrated in Fig. 7. Note that the separated expansion method reaches the same error level as the ANOVA approximation 
with just five modes for t ≤ 1, but it requires a larger separation rank at later times in order to keep the same accuracy. In 
addition, the convergence rate of the separated expansion method saturates with R due to time integration errors. In Fig. 8, 
we show the PDF of the solution to the advection problem (26) at different times, where we have considered a random 
forcing term with m = 24 random variables. Such a PDF is obtained by solving (28) with a separated series expansion (30)
of rank R = 8. Convergence with respect to R is demonstrated in Fig. 9. It is seen that the convergence rate in this case 
is slower than in the previous example (see Fig. 7), and the overall relative error is larger. This is due to the presence 
of the time-dependent forcing term in Eq. (26), which injects additional energy in the system and yields new SSE modes 
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Fig. 8. Stochastic advection problem (26): PDF of the solution at different times. The PDF dynamics is obtained by solving (28) with a separated series 
expansion. The separation rank is set to R = 8, and we consider m = 24 random variables in (26). (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

Fig. 9. Stochastic advection problem: relative L2 errors of the separated PDF solutions with respect to the analytical solution (29). Shown are results for 
different number of random variables m in (25)–(26) and different separation ranks R . It is seen that the accuracy of the separated expansion method 
mainly depends on the separation rank rather than on the number of random variables.

Fig. 10. Adaptive SSE algorithm: separation rank R (a) and relative L2 error (b) versus time for different thresholds θ initiated with a separation rank r
(Ar -SSE). A small θ yields a large separation rank and a small relative error.

(see Fig. 4). This yields a higher separation rank for a prescribed level of accuracy. In addition, the plots suggest that the 
accuracy of the separated expansion method depends primarily on the separation rank R of the solution rather than on the 
dimensionality of the random forcing vector.

So far, we fixed the separation rank R throughout our simulations, to investigate convergence and accuracy of the sep-
arated series expansion method. However, in practical applications, the appropriate separation rank should be identified 
on-the-fly, i.e., while the simulation is running. To address this question, in the previous section, we propose an adaptive 
strategy based on the spectrum α = {α1, . . . , αR} of the separated series, that is, increasing the separation rank R if the ratio 
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Fig. 11. Adaptive SSE algorithm: comparison between the relative L2 errors of the adaptive separated expansion method (A-SSE) and the ANOVA (PCM-A, 
level 2) method. Results are for the kinetic equation (28) with threshold θ = 5 · 10−4. It is seen that the error of the A-SSE method is slightly independent 
of m, while the error of ANOVA level 2 increases as we increase m.

Fig. 12. Computational time (in seconds) of the separated expansion method (SSE), and probabilistic collocation ANOVA level 2 (PCM-A) and sparse grid 
level 3 (PCM-S) as a function of the number of random variables m and separation rank R . The results are normalized with respect to the computing time 
of using the tensor product with m = 3. The dotted lines correspond to extrapolations based on short-runs estimates.

αR/α1 > θ . The corresponding adaptive algorithm initialized with a separation rank r is denoted as Ar -SSE, and it is studied 
hereafter with reference to Eq. (28). In Fig. 10 we plot R versus time for different thresholds θ . It is seen that the adaptive 
algorithm yields a separation rank that increases in time. In particular, the case θ = 10−3 yields R = 10 at t = 3, which 
results in a slightly larger error than the one obtained for fixed R = 10. In Fig. 11, we compare the accuracy of the A6-SSE 
method with θ = 5 · 10−4 and the ANOVA method (level 2). Specifically, we study the relative L2 error of the solution to Eq. 
(28) for different number of random variables, i.e., m = 13, m = 24, and m = 54. We first notice that the error in the A6-SSE 
method seems to be slightly independent of m. On the other hand, the error of ANOVA method increases with m, although 
such an error can be improved by increasing the interaction order. However, this would yield an increasing number of 
collocation points. For example, increasing the interaction order from two to three for m = 54 would increase the number 
of collocation points from 70 498 to 8 578 270 (see [64]). In Fig. 12, we compare the computational time of the separated 
series expansion method, with the ANOVA method of level two and sparse grid of level three on the excitation space. The 
simulations are performed on a single CPU of Intel Xeon E5540 (2.53 GHz) and the results are normalized with respect to 
the computing time using the tensor product for the case m = 3. It is seen that the separated expansion method costs less 
than the ANOVA level 2 when m ≥ 24 and R ≤ 8. In the case of equation (27), the separated expansion method is more 
efficient than ANOVA, as it reaches the same error level with a small separation rank (R < 8).

In summary, the separated series expansion method is effective for high-dimensional kinetic equations provided the 
solution has a small separation rank. If the separation rank is relatively large, then the ANOVA method is expected to be 
more efficient, although a rigorous quantification of this statement should be done on a case-by-case basis.

4.2. Lorenz-96 system

The Lorenz-96 system is a continuous in time and discrete in space model often used in atmospheric sciences to study 
fundamental issues related to forecasting and data assimilation [70,71]. The basic equations are

dxi

dt
= (xi+1 − xi−2) xi−1 − xi + F , i = 1, . . . ,n. (32)

Here we consider n = 40, F = 1, and assume that the initial state x(0) = [x1(0), . . . , x40(0)] is jointly Gaussian with PDF
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Fig. 13. Lorenz-96 system: The mean (a), (b) and standard deviation (c), (d) computed by the one-point (a) two-points (c) BBGKY closure compared to the 
Monte-Carlo simulation (b), (d). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

p(z1, . . . , z40, t = 0) =
(

25

2π

)20 40∏
i=1

exp

[
−25

2

(
zi − i

40

)2
]

. (33)

Thus, in this system we have n = 40 phase variables and m = 0 parameters, i.e., N = n. The kinetic equation governing the 
joint PDF of the phase variables x(t) = [x1(t), . . . , x40(t)] is

∂ p(z, t)

∂t
= −

40∑
i=1

∂

∂zi
[((zi+1 − zi−2)zi−1 − zi + F ) p(z, t)] , z ∈ R40 (34)

and it cannot be obviously solved in a tensor product representation because of high-dimensionality and possible lack of 
regularity (for F > 10) related to the fractal structure of the attractor [71]. Thus, we are led to look for reduced-order PDF 
equations. Specifically, we consider here the one-point and two-points BBGKY closures we discussed in section 2.2. The 
first one yields the approximated system

∂ pi(zi, t)

∂t
= − ∂

∂zi

[
(〈xi+1〉 − 〈xi−2〉) 〈xi−1〉i−1|i − (zi − F )pi(zi, t)

]
, (35)

where 〈〉i| j is defined in (21). In order to close such a system within the level of one-point PDFs, 〈xi−1〉i−1|xi
could be 

replaced, e.g., by 〈xi−1〉 p(zi, t). Similarly, the two-points BBGKY closure of the adjacent nodes yields the hierarchy

∂ pi i+1(zi, zi+1, t)

∂t
= − ∂

∂zi

[
zi+1 〈xi−1〉i−1|i pi+1(zi+1, t) − 〈xi−2〉 〈xi−1〉i−1|i pi+1(zi+1, t)

−(zi − F ) pi i+1(zi, zi+1, t)] − ∂

∂zi+1

[〈xi+2〉i+2|i+1 zi pi(zi, t) − 〈xi−1〉 zi pi i+1(zi, zi+1, t)

−(zi+1 − F ) pi i+1(zi, zi+1, t)] . (36)

By adding the two-points closure of one node apart, i.e., xi−1 and xi+1, the quantity 〈xi−2〉 〈xi−1〉i−1|i pi+1(zi+1, t) in the first 
row and 〈xi−1〉 zi pi i+1(zi, zi+1, t) in the second row can be substituted by 〈xi−2〉i−2|i 〈xi−1〉i−1|i+1 and 〈xi−1〉i−1|i+1 zi pi(zi, t), 
respectively. In our simulation, we alternate between the two approximations at every time step. Each equation in (35)–(36)
is discretized by using a Fourier spectral collocation method with qz = 64 degrees of freedom in each variable, and fourth-
order Runge–Kutta time integration with �t = 10−3.

In Fig. 13, we plot the mean and the standard deviation of the solution to (32) computed by the one- and two-points 
BBGKY closures and the Monte Carlo simulation – 50 000 solution samples. It is seen that the mean of the BBGKY closure 
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Fig. 14. Lorenz-96 system: The absolute error of the mean (a) and standard deviation (c), (d) by using the BBGKY closure compared to the Monte-Carlo 
simulation in log-scale. In (c) and (d), the results are computed by the one- and two-points BBGKY closure (Eqs. (35) and (36), respectively) and the L1

error is shown in (b). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

coincides with the one obtained from the Monte Carlo and the one-point closure. However, the standard deviation is slightly 
different. The absolute error in log-scale compared to the Monte Carlo simulation is shown in Fig. 14, where we observe 
the reduced error in the standard deviation by involving the two-points PDFs. This can be also seen in Fig. 14(b) where we 
plot the L1 error of the moments. Note that adding the two-points PDFs to the hierarchy in this case improves the error in 
the standard deviation by a small amount.

4.3. Stochastic diffusion equation

An interesting question arises whether it is possible to determine a closed PDF evolution equation of the solution to 
second order PDEs at a specific space–time location. Unfortunately, the answer is negative due to its nonlocal solutions 
in space and time. This nonlocal feature yields the impossibility to determine a point-wise equation for the probability 
density. Still, there has been extensive studies to tackle this problem by use of functional integral methods, in particular 
those involving the Hopf characteristic functional [72–74]. Here we consider the semi-discrete form of PDEs that can be 
written in a form of multi-dimensional dynamical system that yields a Liouville type PDF equation. Afterwards, the BBGKY 
closure is employed to the corresponding multi-dimensional PDF system, combined with the ANOVA method in case we 
have a high-dimensional excitation space.

Let us consider a diffusion equation as follows:

∂u

∂t
= ∂

∂x

(
μ(x, t;ω)

∂u

∂x

)
, (37)

where x ∈ [0, 2π ], t ≥ 0 and μ(x, t; ω) > 0 is the random diffusivity. This equation is accompanied by a periodic boundary 
condition u(0, t; ω) = u(2π, t; ω) and ux(0, t; ω) = ux(2π, t; ω). We then discretize the solution in the physical space by 
using a set of orthogonal basis functions in L2([0, 2π ]). Here, we consider the Fourier basis functions as

u(x, t;ω) = û0(t;ω) +
∑

k

(
ûk(t;ω) sin(kx) + û−k(t;ω) cos(kx)

)
. (38)

We assume that we have available a similar representation for the diffusivity μ(x, t; ω) with coefficients {μ̂k(t; ω)} in terms 
of random variables as μ̂k(t; ω) = μ̂k(t; ξ(ω)). Then, the dimensionality of the kinetic equation depends on the truncation 
of the solution (38) and the parameters. In other words, the dimensionality can be as high as the number of basis functions, 
which will be necessary when the solution in the physical space has low regularity. Thus, we employ the BBGKY closure 
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Fig. 15. The mean (a), (c) and standard deviation (b), (d) of the solution to the heat equation with time-correlated random coefficient with correlation 
length lc = 0.1 (a), (b) and space dependent coefficient (c), (d) up to time t = 1. The shown results are computed by the PDF (REPDF) and the Monte Carlo 
(MC) approach, where we cannot visually distinguish the difference in the results.

approach developed in Section 2.2 to obtain a reduced-order PDF equation, approximating the system within lower order 
interactions. When the random coefficient is independent of the physical variable, the Fourier modes are independent. 
Therefore, we can truncate the BBGKY closure at the level of one-point PDFs. The equation becomes

∂ pk(zk, t)

∂t
= − ∂

∂zk

[
−k2μ(t,bμ) zk pk(zk)

]
, (39)

where bμ is a vector of parametric random variables. In case of space dependent coefficients, interactions between the 
Fourier coefficients occur. Hence, it becomes inevitable to include the higher-order joint PDFs. We compute the two-point 
BBGKY closure for the joint PDF equation of the k-th and l-th coefficient as

∂ pkl(zk, zl, t)

∂t
= − ∂

∂zk
[Q(pkl,k)] − ∂

∂zl
[Q(pkl, l)] , (40)

where

Q(pij, i)
def=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−i2μ̂0zi pi j +∑

n+m=i(
mi
2 (−μ̂n〈z−m〉−m|i − μ̂−n〈zm〉m|i))p j

+∑
n−m=|i|(

m(n−m)
2 (μ̂n〈z−m〉−m|i − μ̂−n〈zm〉m|i))p j, i ≥ 0

−i2μ̂0zi pi j +∑
n+m=|i|(−mi

2 (μ̂n〈zm〉m|i − μ̂−n〈z−m〉−m|i))p j

+∑
n−m=|i|

m(n−m)
2 (μ̂n〈zm〉m|i + μ̂−n〈z−m〉−m|i)p j, i < 0.

(41)

Here, 〈·〉m|i is defined as in Eq. (21), and the arguments of μ̂n are omitted. Finally, when the dimensionality of the parametric 
space exceeds three, we employ the ANOVA decomposition.

We first consider a time-dependent random coefficient for the diffusion term, and compute the solution by using the one-
point BBGKY closure (39). In particular, we take a log-normal random coefficient μ(t; ω) defined as V (t; ω) = log(μ(t; ω)), 
where V (t; ω) is a mean-zero exponentially correlated Gaussian process with correlation time lc = 0.1. The coefficient is 
represented by using the Karhunen–Loève expansion in a series expansion form. It involves 20 Gaussian random variables, 
that is truncated to achieve 97% of the eigen-spectrum, and we employ the ANOVA method of level two for the colloca-
tion basis based on the Hermite polynomials. We simply consider the initial solution u(x, t = 0; ω) = sin(x)η1(ω) with a 
Gaussian random variable η1(ω) = N(1, 0.1), which makes the initial condition of the BBGKY closure as pη1 (z1). Thus, the 
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total dimensionality of the kinetic equation is 21. For the time integration, we employ the fourth-order Runge–Kutta method 
with time step �t = 10−3. Fig. 15 shows the evolution of the mean and standard deviation of the solution at time t = 0, 
0.5, 1. The BBGKY results coincide with the reference solution computed by using the Monte-Carlo simulation with 50,000 
samples, and we remark that the relative L2 error stays at the level of O (10−4).

In case of a space dependent random coefficient, we consider V (x; ω) = log(2 μ(x; ω)), where V (x; ω) =∑2
k=1(sin(kx)ξk(ω) + cos(kx)ξ−k(ω)) and ξk(ω) ∼ N(0, 1/32) for all k’s. Here, we compute the PDF by using the two-points 

closure (40). By taking the initial solution as u(x, t = 0; ω) = η0(ω) + ∑3
k=1(sin(kx)ηk(ω) + cos(kx)η−k(ω)), with indepen-

dent Gaussian random variables ηk(ω) = N(1, 0.1) for k �= 0 and η0(ω) = N(0, 0.1), the initial condition for the two-points 
BBGKY closure becomes pkl(zk, zl, t = 0) = pηk (zk)pηl (zl). We take the resolution of the solution to be the same as the 
initial condition by using seven Fourier coefficients. Thus, the kinetic equation lies in an 11-dimensional space with seven 
phase variables and four parameters. Again, the parametric space is accompanied with the ANOVA method of level two. 
Fig. 15 compares the mean and standard deviation compared to 50,000 Monte Carlo simulations at time t = 0, 0.5, 1, and 
the two lines cannot be visually distinguished. For both of the first and second moment, the relative L2 error stays within 
the level of O (10−3). Thus, we conclude that the PDF of the solution to a time and space dependent diffusion equation can 
be computed with reasonable accuracy considering the time step and the truncation of the computational domain by using 
the BBGKY closures and ANOVA approach.

5. Summary and discussion

In this paper we proposed and validated three different classes of new algorithms to compute the numerical solution 
of high-dimensional kinetic partial differential equations. The first class of algorithms is based on separated series expan-
sions (SSE) and it yields a sequence of low-dimensional problems that can be solved recursively and in parallel by using 
alternating direction methods. In particular, we developed a new algorithm that updates the entire rank of the separated 
representation in each variable, minimizing separation rank and improving the convergence rate. We also proposed an adap-
tive version of such an algorithm and we demonstrated its effectiveness in numerical applications to random advection of 
passive scalar fields. The second class of algorithms we proposed is based on a hierarchy of coupled probability density 
function equations that resembles the BBGKY [50] and the Lundgren–Monin–Novikov [75,76] hierarchies. We studied the 
accuracy and the computational efficiently of low-order truncations of the hierarchy (BBGKY closure) for the Lorenz-96 
system and the semi-discrete form of the diffusion equation. The third class of algorithms relies on high-dimensional model 
representations (ANOVA expansions) and probabilistic (sparse) collocation methods. A common feature of all these methods 
is that they allow us to reduce the problem of computing the solution to high-dimensional kinetic equations to a sequence 
of low-dimensional problems. The range of applicability of proposed new algorithms is sketched in Fig. 1 as a function of 
the number of phase variables n and the number of parameters m appearing in the kinetic equation. The SSE scales linearly 
and the ANOVA method scales factorially with the dimension of the phase space, and they yield comparable results for 
moderate separation ranks. However, for large separation ranks the ANOVA method is preferable to SSE in terms of com-
putational cost. We emphasize that the choice between ANOVA and SSE does not depend on the number of variables in 
the kinetic equation but rather on the properties of its solution, in particular the separation rank. In addition, in order to 
approximate the kinetic system regarding the interaction order between the variables, the BBGKY closure and the ANOVA 
method is convenient to be employed for the phase variable and the parameters, respectively.

Further developments of the proposed algorithms can be addressed along different directions. For example, one can 
consider tensor interpolative [77,78] and tensor train decompositions [79] to further improve the SSE method, by accelerat-
ing the rank reduction process. This is very useful when solving systems with large separation rank, such as those arising 
from Eq. (28). In addition, iterative solvers with appropriate preconditioners and adaptive methods can further reduce the 
computational cost of determining ANOVA and SSE decompositions (see [64] and section 2.1). Adaptive strategies can also 
be applied to the conditional moment approach by using variance-based sensitivity analysis, e.g., in terms of Sobol indices 
[60,61].
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Appendix A. Finite-dimensional representation of the alternating direction algorithm

In this appendix we provide additional details on the discretization of the alternating direction Galerkin algorithm we 
proposed in section 2.1. To this end, let us first represent the basis functions appearing in joint probability density (1) in 
terms of polynomials as

pr
n(zn) =

qz∑
pr

n, jφn, j(zn), (42)

j=1
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where qz is the number of degrees of freedom in each variable. For example, in section 4.1, we have considered a spectral 
collocation method in which {φ1, j} and {φ2, j} are trigonometric interpolants while {φn, j}N

n=3 are Lagrange interpolants 
through Gauss–Legendre–Lobatto points. The vector

pr
n = [

pr
n,1, · · · ,pr

n,qz

]
collects the (normalized) values of the solution at the collocation points. In such a collocation framework, we can write the 
expansion (1) in terms of a tensor product of degrees of freedom as

p =
∞∑

r=1

αrpr
1 ⊗ · · · ⊗ pr

N . (43)

Accordingly, the finite dimensional version of Eq. (12) is

Ap = f,

where

A =
nA∑

k=1

Ak
1 ⊗ · · · ⊗ Ak

N , f =
n f∑

k=1

fk
1 ⊗ · · · ⊗ fk

N , (44)

Ak
n[i, j] =

∫
φn,i(zn) Ak

n(zn)φn, j(zn)dzn, fk
n[i] =

∫
f k
n (zn)φn,i(zn)dzn. (45)

By using a Gauss quadrature rule to evaluate the integrals, we obtain system matrices Ak
n that either diagonal or coincide 

with the classical differentiation matrices of spectral collocation methods [80]. For example, in the case of equation (27) we 
have the components

A1
1[i, j] = wx[i]δi j, Ak

1[i, j] = �t

2
wx[i]Dx[i, j], k = 2, . . . ,nA,

A1
2[i, j] = A2

2[i, j] = wz[i]δi j, Ak+2
2 [i, j] = sin(ktn+1)

2k
wz[i]δi j, k = 1, . . . ,m,

Ak
3[i, j] = wb[i]δi j, k �= 3, A3

3[i, j] = wb[i]qb[i]δi j, · · ·
where qb denotes the vector of collocation points, wx , wz , and wb are collocation weights, Dx is the differentiation matrix, 
and δi j is the Kronecker delta function. The alternating direction algorithm in the n-th direction yields a sequence of linear 
system

Bnp̂n = bn, (46)

where Bn is a block matrix with R × R blocks of size qz × qz , and bn is multi-component vector. Specifically, the hv-th block 
of Bn and the h-th component of bn are obtained as

Bhv
n =

nA∑
k=1

⎛⎝ N∏
i �=n

[
ph

i

]T
Ak

i pv
i

⎞⎠Ak
n, bh

n =
n f∑

k=1

⎛⎝ N∏
i �=n

[
ph

i

]T
fk

i

⎞⎠ fk
n.

The solution vector

p̂n =
[

p1
n, . . . ,pR

n

]T

is normalized as pr
n/ 

∥∥pr
n

∥∥ for all r = 1, .., R and n = 1, . . . , N . This operation yields the coefficients α = (α1, . . . ,αR) in (43)
as a solution to the linear systems

Dα = d, (47)

where the entries of the matrix D and the vector d are, respectively

Dhv =
nA∑

k=1

N∏
i=1

[
ph

i

]T
Ak

i pv
n , dh =

n f∑
k=1

N∏
i=1

[
ph

i

]T
fk

i .

The main steps of the algorithm are summarized in Table 3.

Stopping criterion. The stopping criterion for the alternating-direction algorithm is based on the condition ‖ApR − f‖ < ε,
which involve the computation of an N-dimensional tensor norm. This can be quite expensive and compromise the com-
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Table 3
Main steps of the proposed alternating-direction Galerkin algorithm.

Compute the separated representation of the initial condition p(t0)

for t1 ≤ ti ≤ tnT do
Compute f by using p(ti−1)

Set R = 1
while

∥∥ApR (ti) − f
∥∥ > ε do

Initialize
{

pR
1 (ti), . . . ,pR

N (ti)
}

at random
while

∥∥ApR (ti) − f
∥∥ does not decrease do

Solve Eq. (46) for 1 ≤ n ≤ N
end while
Normalize the basis set and compute the coefficients {α1, . . . ,αR }
Set R = R + 1

end while
end for

putational efficiency of the whole method. To avoid this problem, we replace the condition ‖ApR − f‖ < ε with a simpler 
criterion for convergence, i.e.,

max

{∥∥̃pR
1 − pR

1

∥∥∥∥pR
1

∥∥ , . . . ,

∥∥̃pR
N − pR

N

∥∥∥∥pR
N

∥∥
}

≤ ε1, (48)

where 
{̃

pR
1 , . . . , p̃R

N

}
denotes the solution at the previous iteration. Note that the condition (48) involves the computation of 

N vector norms instead of one N-dimensional tensor norm.
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