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Nonlinear Problems

» How should we approach the nonlinear system

A(u) =f

and can we use multigrid to solve such a system?

- A fundamental relation we've relied on, the
residual equation

Au —Av =f —Av => Ae=r

does not hold, since, if A(u) is a nonlinear
operator,

A(u) —A(v) # A(e)
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The Nonlinear Residual Equation

- We still base our development around the residual
equation, now the nonlinear residual equation:

A(u) =f
A(u) —A(v) =f —A(v)
A(u) —A(v) =r

»+ How can we use this equation as the basis for a
solution method?
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Let's consider Newton's Method

* The best known and most important method for
solving nonlinear equations!

+ We wish to solve F(x)=0.
- Expand F in a Taylor series about x:
F(x+s) = F(x) +sF’(x) + s?2F” (&)

* Dropping higher order terms, if x+sis a solution,

0=F(s) +sF’'(x) s s =—-F(x)/ F (x)
 Hence, we develop an iteration
F(x)
X &< X —

F(x)
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Newton's method for systems

- We wish to solve the system A(u) = 0. In vector
form this is
fl(ul’ Uy, ..., l/lN) 0

A(u) _ fz(ul, Moz, ,MN) _ O

0
S Uy, uy, ooy upy)

+ Expanding A(v+e)in a Taylor series about v:

A(v+e) =A(v) + J(v)e + higher order terms
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Newton for systems (cont.)

J(v) =

Jf
duy
af 5
duy

of n
81/11

af2

duy

Af n
2

2

af'
auN

af2

Af n

auN

* Where J(v)is the Jacobian system

afl e

duy

u=v

- If wu=v+eisasolution, 0= A(v)+ J(v)e and

e= - L] A

* Leading to the iteration

vV &— Vv — [J(v)]_lA(v)

7 of 104



Newton's method in terms of the
residual equation

» The nonlinear residual equation is

A(v+e) —A(v)=r

»+ Expanding A(v+¢)in a two-term Taylor series about v:

A(v) +J(v) e —A(v) =r
J(v)e=r

- Newton's method is thus:

r=f —A(v)
V «— v + [J(v)rlr
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How does multigrid fit in?

» One obvious method is to use multigrid to solve

J(v)e = r at each iteration step. This method is
called Newton-multigrid and can be very effective.

However, we would like to us multigrid ideas to
treat the nonlinearity directly.

Hence, we need to specialize the multigrid
components (relaxation, grid transfers,
coarsening) for the nonlinear case.
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What is nonlinear relaxation?

Several of the common relaxation schemes have
nonlinear counterparts. For A(u)=f, we describe
the nonlinear Gauss-Seidel iteration:

- Foreach j=1,2, ..,N

- Set the jth component of the residual to zero and solve for
V;. That is, solve (A(v)), = fJ

+ Equivalently,
- Foreach j=1,2, ..,N
- Find s e 9 such that

(A(v +5€)); =f

where €; is the canonical jt/ unit basis vector
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How is nonlinear Gauss-Seidel done?

+ Each (4(v)); = f; is a nonlinear scalar equation for
v;. We use the scalar Newton's method to solve!

. Example: —u” (x) +u(x) e =f, may be
discretized so that (4(v)); = f; is given by

TVt 2V Vi 1<j<N-1

V.
e’ =f.
]22 + Ve uf}

* Newton iteration for v; is given by

—Vvi_1+t2v;, = vy

V.
oV
2 tv,e vy

Vi &— v, — 5
V.
— +e /(1 +v))
h 2 J
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How do we do coarsening for
nonlinear multigrid?

» Recall the nonlinear residual equation

A(v+e) —A(v) =r

* In multigrid, we obtain an approximate solution v”
on the fine grid, then solve the residual equation
on the coarse grid.

+ The residual equation on Q*"appears as

AZh(vzh _|_e2h) _Azh(v2h) — 2h
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Look at the coarse residual equation

- We must evaluate the quantities on Q%'in

A2h(v2h +82h) _Azh(VZh) _ 7.2h

» Given v/, a fine-grid approximation, we restrict
the residual to the coarse grid

72 = (- A" (o)

+ For v?"we restrict v/ by y2h = [%h ph
» Thus,

APV w2y = 4 (Y + I (- ATy )
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We've obtained a coarse-grid
equation of the form 47 (u?) =7

- Consider the coarse-grid residual equation:

A7 (L ey = A7 (Y + 1 (- AP ohy )

— = -
—_
1 2h f2h
coarse-grid unknown All quantities are known

- We solve A%(u%) =f2hfor' u?h = I;fhvh +¢e?" and
obtain

e2h — 2h _ }%hvh

* We then apply the correction:

h — h h 2h
vt =y +[2he
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FAS, the Full Approximation
Scheme, two grid form

) ) h h
. Perform nonlinear relaxation on 4" (u") =f" to

obtain an approximation v" .

» Restrict the approximation and its residual
2h_[2h h ],Zh:]}%h(fh —A(vh))
» Solve the coarse-grid residual problem
AZh(uzh) _ AZh(Vzh) + p2h

» Extract the coarse-grid error

o2h — 2k _ ,2h

- Interpolate and apply the correction

vh =y +[§hezh
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A few observations about FAS

+ If Aisalinear operator then FAS reduces directly to
the linear two-grid correction scheme.

+ A fixed point of FAS is an exact solution to the fine-
grid problem and an exact solution to the fine-grid
problem is a fixed point of the FAS iteration.
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A few observations about FAS,
continued

- The FAS coarse-grid equation can be written as
A2y = 4 g
where T%h is The so-called tau correction.

 In general, since %" #0 the solution 42" to the
FAS coarse-grid equation is not the same as the
solution to the original coarse-grid problem

AZh( uzh) =f2h

* The tau correction may be viewed as a way to alter
the coarse-grid equations to enhance their

approximation properties. s



Still more observations about
FAS

FAS may be viewed as an inner and outer iteration:
the outer iteration is the coarse-grid correction,
the inner iteration the relaxation method.

» A true multilevel FAS process is recursive, using
FAS to solve the nonlinear Q*" problem using Q.
Hence, FAS is generally employed ina V- or W-
cycling scheme.
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And yet more observations about
FAS!

* For linear problems we use FMG to obtain a good
initial guess on the fine grid. Convergence of
nonlinear iterations depends critically on having a
good initial guess.

* When FMG is used for nonlinear problems the
interpolant [ , u? is generally accurate enough to
be in the basm of attraction of the fine-grid
solver.

* Thus, one FMG cycle, whether FAS, Newton, or
Newton-multigrid is used on each level, should

provide a solution accurate to the level of
discretization, unless the nonlinearity is extremely
STrong 19 of 104



Intergrid transfers for FAS

» Generally speaking, the standard operators (linear
interpolation, full weighting) work effectively in
FAS schemes.

» In the case of strongly nonlinear problems, the
use of higher-order interpolation (e.g., cubic
interpolation) may be beneficial.

* For an FMG scheme, where Ih 21 is the
interpolation of a coarse-grid SOIUTIOH to become a
fine-grid initial guess, higher-order interpolation
is always advised.
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What is 47 (u2") in FAS?

- As in the linear case, there are two basic possibilities:

A4 2h( 1) is determined by discretizing the nonlinear
opera’ror' A(u) in the same fashion as was employed to
obtain 4”(u"), except that the coarser mesh spacing
IS used.

A*"(u?h) is determined from the Galerkin condition
2h 2h h h
A N uhy = 1" A" (uh I,
where the action of the Galerkin product can be
captured in an implementable formula.

* The first method is usually easier, and more common.
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Nonlinear problems: an example

- Consider
—Au(x,y) +yu(x,y) "V = f(x,y)

on the unit square [0,1] x [0,1] with homogeneous
Dirichlet boundary conditions and a regular
Cartesian grid.

- Suppose the exact solution is
u(x,y) = (x*-x3) sin(3my)
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Discretization of nonlinear example

* The operator can be written (sloppily) as

1 -1 h
[-_1 ’ __ljuﬁj'*VuﬁjewJ =1i,j

2
\ — ! J
Y
Ah(uh)
» The relaxation is given by

(A"uhy)y =y

h h

4 U
_ hy e b
e -+ y(1+ul’]) e
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FAS and Newton's method on

—Aux,y) + yu(x,y) Y = f(x,y)

- FAS
v
1 10 100 1000
convergence factor| 0.135 0.124 0.098 0.072
number of FAS cycles 12 11 11 10
* Newton's Method
Y
1 10 100 1000

convergence factor| 4.00E-05 7.00E-05 3.00E-04 | 2.00E-04
number of Newton iterations 3 3 3 4
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Newton, Newton-MG&, and FAS on

—Au(x,y) +yu(x,y) et Y) = f(x,y)

Newton uses exact solve, Newton-MG is inexact Newton with
a fixed number of inner V(2,1)-cycles the Jacobian problem,
overall stopping criterion ||, < 107"

Outer Inner
Method| iterations | iterations |Megaflops
Newton 3 1660.6
New ton-MG 3 20 56.4
New ton-MG 4 10 38.5
New ton-MG 5 5 25.1
New ton-MG 10 2 22.3
New ton-MG 19 1 24.6
FAS 11 27.1
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Comparing FMG-FAS and FMG-Newton

—Au(x,y) +yu(x,y) €M(x’y) =f(x,)

We will do one FMG cycle using a single FAS V(2,1) -
cycle as the "solver” at each new level. We then
follow that with sufficiently many FAS V(2,1)-cycles
as is necessary to obtain ||r|| < 10-10,

Next, we will do one FMG cycle using a Newton-
multigrid step at each new level (with a single linear
V(2 ,1)-cycle as the Jacobian "solver.”) We then
follow that with sufficiently many Newton-multigrid
steps as is necessary to obtain ||r|| < 101,
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Comparing FMG-FAS and FMG-Newton

—Au(x,y) +yu(x,y) €M(x’y) =f(x,)

Cycle
FMG-FAS
FAS V
FAS V
FAS V
FAS V
FAS V
FAS V
FAS V
FAS V

I
1.10E-02
6.80E-04
5.00E-05
3.90E-06
3.20E-07
3.00E-08
2.90E-09
3.00E-10
3.20E-11

lle™ |
2.00E-05
2.40E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05

Mflops
3.1
54
7.6
9.9
12.2
14.4
16.7
18.9
21.2

I

1.06E-02
6.70E-04
5.10E-05
6.30E-06
1.70E-06
5.30E-07
1.70E-07
5.40E-08
1.70E-08
5.50E-09
1.80E-09
5.60E-10
1.80E-10
5.70E-11

lle” |l
2.50E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05

Mflops
2.4
4.1
5.8
7.5
9.2

10.9
12.6
14.3
16.0
17.7
19.4
21.1
22.8
24.5

Cycle
FMG-Newton
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
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Neumann Boundary Conditions

+ Consider the (1-d) problem
—u”(x) =f(x) 0<x<l
u’ (0) =u’(1) =0
|

- We discretize this on the interval [0,1]Jwith h = ——

grid spacing x; = jn for j=1,2, .., N+I. N+1

- We extend the interval with two ghost points

0 X 1
”—0—0—0—0— 00— 00— 00— 0—0—90

10 1 2 3. N-1 N N+IN+2
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We use central differences

We approximate the derivatives with differences,
using the ghost points:
*—0—0—0—0—0—0—0—0—0— 90

-1 0 1 J-1 Jj Jt N N+1 N+2
Uy —u_ —uj gt 2up Uy Upn 4o — U
W(0) = 1 = 1 u"(xj) __ hz] J (1) = N+2h N

* Giving the system

U1t A T 0<j<N+1
_f]

h2

Up—u_q UnN+2 ~HUN
2h 2h
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Eliminating the ghost points

» Use the boundary conditions to eliminate u_, uy,»

Uy — u u —u B
L 71 :>u_1:u1 N2 N=0:>”N+2_”N
2% 2h

- Eliminating the ghost points in the j=0 and j=N+1
equations gives the (N+2)x(N+2) system of equations:

2 =/ T
h
— U + 2u
2u0—2u1 N N+1:fN+1

/’12
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We write the system in matrix
form

- We can write Ahuh =fh, where

-2
-1 2 -1
1 -1 2 -1

-1 2 -1
-1 2

h
. Note that A s (N+2)x(N+2), nonsymmetric, and
the system involves unknowns ufl and uf; . | at the
boundaries.
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We must consider a compatibility
condition

+ The problem —u” (x) =f(x),for 0<x<1 and
with u”(0) =u’(1) =0 is not well-posed!

+ If u(x)is asolution, so is u(x)+c for any constant c.

- We cannot be certain a solution exists. If one does,
it must sa’rislfy 1

—fu”(x) dx = ff(x) dx :> —[uw' (1) —u'(0)] = ff(x) dx
0

0 0

1
0= | f(x)dx
|

» This integral compatibility condition is necessary!
If f(x)doesn't satisfy it, there is no solution A of 104



The well-posed system

» The compatibility condition is necessary for a
solution to exist. In general, it is also sufficient,
which can be proven that _ 2" is a well-behaved
operator in the space of futictions u(x)that have
Zero mean.

* Thus we may conclude that if 7(x)satisfies the
compatibility condition, this problem is well-posed:

—u”(x) =f(x) O<x<l
u’ (0) 1:u'(1) =0

fu(x)dx =0

0

* The last says that of all solutions u(x)+c we choose
the one with zero mean. 34 of 104



The discrete problem is not well posed
. Since all row sums of 4"are zero, 1" NS (4™

» Putting A"into row-echelon form shows that

dim(NS(4”™)) =1 hence NS(4") = span(1")

* By the Fundamental Theorem of Linear Alzgebr'a A"
has a solution if and only if FPLINS (4™

+ It is easy to show that NS( (4™’ =c(1/2,1,1,...,1, 112"

+ Thus, 4" u” —f has a solution if and only if
f Le(l/2,1,1,..., 1, 1/2)

* That is,
fO "'Zf + fN+1—O

j=1
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We have two issues to consider

- Solvability. A solution exists iff " Lns(4™7)
+ Uniqueness. If u” solves 4"u" = f"so does u”" + c1”

. Note that if 4" = (4" then Ns(4?) = Ns(4™7T)
and solvability and uniqueness can be handled together

* This is easily done. Multiply 1st and last equations by

1/2, giving bt

-1 2 -1
1 -1 2 -1

h2

~h
4 =

-1 2 -1
-1 1 36 of 104



The new system is symme'rr'lc

~N
We have the symmetric system A4 uh =f

/2
1 -1 uf foh
-1 2 -1 uf /1
1 -1 2 -1 Mél B fél
; . . — :
—1 2 —1 u]}\l] fh

-1 1 uh N

N+1 fN+1/2

Solvability is guaranteed by ensur'm% that f
orthogonal to the constant vector 1:

N+1
<fh,1”> = > 7 =0
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The well-posed discrete system

+ The (N+3)x(N+2) system is:

—U.: +2u. — Uu.
R A A 0<j<N+1
2 _fj
h .
wo—uy Jfo
Bt 2
—uytuner SN+
h? :
N+1
Z ull = 0 (choose the zero mean solution)
i =0
or, more simply A~ ~h
A ul=f

(ul 1" =0
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Multigrid for the Neumann Problem

We must have the interval endpoints on all grids

ho . h h
Y0 X1 XN/2 Xy
o—0—0—0—0—0—0—0—90
.2h @ o @ o
2h 2h
X0 AN/4 N2

Relaxation is performed at all pom’rg including endpoints:
, , . v]h1++]+1+hf
Vo V] + h fO Vi &—

h j
! > VN+1*VN+th+1

We add a global Gram-Schmidt step after relaxation on
each level to enforce the zero-mean condition

S
h
<1 : > 39 of 104
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Interpolation must include the
endpoints

+ We use linear interpolation:

IASVAYVASTAY!

1
12 172
1
12 172
Iy, = 1
12 172
1
12 12
1

BER
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Restriction also treats the
endpoints

1
* For restriction, we use I,%h = E(lélh) ! yielding the

values
~2h 1 A4 1 A&

o :Efo+zf1

~2h 1 A& 1 A& 1 A
f :Zij—l +§f2j +Zf2j+1

~2h 1 ~ 1 ~&

fN+1:4fN+§fN+1
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The coarse-grid operator

We compute the coarse-grid operator using the

Galerkin condition ~2h N/
A7 =141,
=0 1
ik 1 0 1 -1
) -1 2 -1

]élhg%h 1 i O 1/4\2h_i -1 2 —1

e [ : " .—.1
n €0 | 5 -
2h 2h
oh Nk 1 1
Ii' A" Iyeg' | — -—
4h 4h

42 of 104



Coarse-grid solvability

~h N/
+ Assuming / satisfies ﬁf 1 2 =0, the solvability
condition, we can show that t eAO{e’rically the coarse-

. ~h ]
grid problem 4~ u?" = I;" (" - 4 v") is also solvable.

» To be certain numerical round-off does not perturb
solvability, we incorporate a Gram-Schmidt like step
each time a new right-hand side 7 is generated for

the coarse grid:

~2h

</ - <12h’12h>
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Neumann Problem: an example

» Consider the problem

0 <x<l

x2

—u”(x) =2x-1 .
u'(0) =u’(1) =0

x3

which has u(x) =—-—+c¢

rZ 3

(c=-1/12 gives the zero mean solution).

as a solution for any ¢

grid size [ h [ average ||eh I number

N conv. factor of cycles

31 6.30E-11 0.079 9.70E-05 9

63 1.90E-11 0.089 2.40E-05 10
127 2.60E-11 0.093 5.90E-06 10
255 3.70E-11 0.096 1.50E-06 10
511 5.70E-11 0.100 3.70E-07 10
1027 8.60E-11 0.104 9.20E-08 10
2047 2.10E-11 0.112 2.30E-08 10
4095 5.20E-11 0.122 5.70E-09 10

44 of 104



Outline

Nonlinear Problems

Neumann Boundary Conditions
Anisotropic Problems
Variable Mesh Problems
Variable Coefficient Problems

Algebraic Multigrid

45 of 104



Anisotropic Problems

All problems considered thus far have had _h_12 as
the off-diagonal entries.

We consider two situations when the matrix has
two different constant on the off-diagonals.
These situations arise when

- the (2-d) differential equation has constant, but
different, coefficients for the derivatives in the
coordinate directions

- the discretization has constant, but different, mash
spacing in the different coordinate directions
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We consider two types of anisotropy
- Different coefficients on the derivatives
— Uxx — O(,Myy :f'

discretized on a uniform grid with spacing 4.

+ Constant, but different, mesh spacings:

hy 47 of 104



Both problems lead to the same
stencil

—Uj g P2U Uy Ut 2U; e~ U g

+ O
h? D h?

1 —
A" =£—1 2420 —1}

2
h —a
_%f_Lk+2%ﬁk_wG+Lk —uﬂk_l'quLk‘—%Lk+l
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Why s'randar'd multigrid fails

* Note that 4" - [ ! 2+2oc —1} has weak connections in the
y-direction. MG convergence factors degrade as o gets
small. Poor performance at o= 0.1.

0
. h 1
« Consider o = 0. A4 3;{—1 2+ 20 —lj

- This is a collection of disconnected 1-d problems!

* Point relaxation will smooth oscillatory errors in the x-
direction (strong connections), but with no connections
in the y-direction the errors in that direction will
generally be random, and no point relaxation will have
the smoothing property in the y-direction.
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We analyze weighted Jacobi

* The eigenvalues of the weighted Jacobi iteration
matrix for this problem are

2m , iT , ITt
7\7-’[ =1 — m ( Sll’lz(z]\[j + (XSIIIz(z]V\]\]
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Two strategies for anisotropy

- Semicoarsening Because we expect MG-like
convergence for the 1-d problems along lines of
constant y, we should coarsen the grid in the x-
direction, but not in the y-direction.

» Line relaxation Because the the equations are
strongly coupled in the x-direction it may be
advantageous to solve simultaneously for entire lines
of unknowns in the x-direction (along lines of
constant y)
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Semicoarsening with point
relaxation

ol 0.4
. . ho L .
- Point relaxation on * _hz( e ‘1) smooths in the x-

direction. Coarsen by removing every other y-line.

ok ::> 02"

- We do not coarsen along the remaining y-lines.

- Semicoarsening is not as "fast" as full coarsening. The

number of points on Q" is about half the number of
points on Q" , instead of the usual one-fourth.
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Interpolation with semicoarsening

We interpolate in the 1-dimensional way along each
line of constant y.

»+ The coarse-grid correction equations are

h _ h )
V2jk = V2jk T Vik
2h 2h
Vitk TVit1Lk

h _ ok
V2i+Lk = V2j+1,k T 7
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Line relaxation with full
coarsening

+ The other approach to this problem is to do full
coarsening, but to relax entire lines (constant y)
of variables simultaneously.

- Write ik in block form as

D —cI
—cl D —cl
Al = —c D —cl
' ' —cl
—cl D
where 2420 —1
.=+ and 1| -1 2420 -1
2 D=— .
h B2 .
-1 2420
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Line relaxation

* One sweep of line relaxation consists of solving a
tridiagonal system for each line of constant y.

* The kth such system has ’rhe form D = gk where V{

is the kth subvector of v/ with entries (v{); = v, and
the kth right-hand side subvector is

h (0
(&) :fj,k+P(vjh, 1V s

Because D is tridiagonal, the kth system can be solved
very efficiently.
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Why line relaxation works

* The eigenvalues of the weighted block Jacobi
iteration matrix are

)

56 of 104



Semicoarsening with line relaxation

+ We might not know the direction of weak coupling
or it might vary.

»  Suppose we want a method that can handle either

1 Y ! -
Alh :2[_1 2+ 20 _1] or Aél =2£—oc 2+ 20 —ocj
h . h _1

- We could use semicoarsening in the x-direction to
handle Al and line relaxation in the y-direction to
take care of 47
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Semicoarsening with line relaxation

The original grid

il

Original grid
viewed as a
stack of
"pencils.” Line
relaxation is
used to solve
problem along
each pencil.

Coarsening is
done by deleting
every other
pencil
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An anisotropic example

- Consider — uxx — Ouyy = f with y=0on the boundaries
of the unit square, and stencil given by

1 -
4" =—| -1 2420 -1
h — o

Suppose f(x,y) =2(y—y?) +20(x-x% so the exact
solution is given by u(x,y) = (y—-y?) (x—x?)

- Observe that if «is small, the x-direction dominates

while if «is large, the y-direction dominates
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What is smooth error?

- Consider a=0.001 and suppose point Gauss-Seidel
is applied to a random initial guess. The error

after 50 sweeps appears as:

Error along line of constant x

Error along line of constant y
60 of 104

0.1

0.06




We experiment with 3 methods

- Standard V(2,1)-cycling, with point Gauss-Seidel
relaxation, full coarsening, and linear interpolation

»+ Semicoarsening in the x-direction. Coarse and fine
grids have the same number of points in the y-
direction. 1-d full weighting and linear
interpolation are used in the x-direction, there is
no y-coupling in the intergrid transfers

+ Semicoarsening in the x-direction combined with
line relaxation in the y-direction. 1-d full weighting
and interpolation.
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With semicoarsening, the
operator must change
* To account for unequal mesh spacing, the residual

and relaxation operators must use a modified
stencil o

- Note that as grids become coarser, /1x grows
while £y, remains constant.
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How do the 3 methods work for
various values of o ?

» Asymptotic convergence factors:

o

scheme| 1000 100 10 1 0.1 0.01 0.001 1E-04

V(2,1)cycles| 0.95 094 058 0.13 058 090 095 0.95

amicoarsening in x| 0.94 099 0.98 093 071 028 0.07 0.07

semiC / line relax| 0.04 0.08 0.08 0.08 0.07 007 0.08 0.08
\ J

Y ~ Y~ o

y-direction strong

x-direction strong

* Note: semicoarsening in x works well for o <.00!

but degrades noticeably even at o = .1
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A semicoarsening subtlety

Suppose « is small, so that semicoarsening m X is
used. As we progress to coarser grids, iy 2 gets
small but hy_zremains constant.

-+ If,on some coarse grid, iy 2 becomes comparable
to ahy © , the problem effectively becomes
recoupled in the y-direction. Continued
semicoarsening can produce artificial anisotropy,
strong in the y-direction.

When this occurs, it is best to stop semicoarsening
and continue with full coarsening on any further
coarse grids.
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Variable Mesh Problems

* Non-uniform grids are commonly used to
accommodate irregularities in problem domains

- Consider how we might approach the 1-d problem
—u”(x) = f(x) 0<x<1
u(0) =u(l) =0

posed on this grid:

x=0 x=1
@ O o—@ @ | m— —
X0 Xj-1 X j+1 X7
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We need some notation for the
mesh spacing

* Let N be a positive integer. We define the
spacing interval between X; and X; 1 :

hj+1/25 Xjp1 =X i=0,1..,N-1
hi 112
® O o—@ @ *—o——90
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We define the discrete
differential operator

» Using second order finite differences (and
plugging through a mess of algebral) we obtain this
discrete representation for the problem:

—ohqh h hy, h gl b — ph < i< N—
ol ui_ + (o) + B )uf —Prut, g =f; 1<j<N-1
u(})lzuf{/:O
- where
2 2

/ hj—l/z(hj—1/2+hj+1/2) 7 bt Ry )
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We modify standard multigrid to
accommodate variable spacing

+ We choose every second fine-grid point as a
coarse-grid point

h
xé’ A2 xf(,
® ® o—O @ *-o—o—0
® ® ® ® gh
xd x ANI2

- We use linear in’rer}Pola‘rion, modified for the
spacing. If v/ =1),v?" , then for 1<j<N2-1

2 2
hyi 3 th +hoi 11 Vj%h
VA . = vzh Vh. —
2] — Y 2j+1

hyjv1n+ hjisn
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We use the variational pr'ope?];ies
to derive restriction and 4.

on 1o T
A=A, Iy =5 (1y)

- This produces a stencil on Q" that is similar, but
not identical, to the fine-grid stencil. If the
resulting system is scaled by (#; _y, + h; . 1/2), then
the Galerkin product is the same as the fine-grid
stencil.

* For 2-d problems this approach can be generalized
readily to logically rectangular grids. However, for
irregular grids that are not logically rectangular,

AMG is a better choice. 70 of 104
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Variable coefficient problems

+ A common difficulty is the variable coefficient
problem, given in 1-d by

—(a(x)u’(x))" =f(x) 0<x <1
u(0) = u(1) =0

where a(x) is a positive function on [0, 1]

* We seek to develop a conservative, or self-adjoinft,
method for discretizing this problem.

- Assume we have available to us the values of a(x)
at the mideinTS of the gr'ld a; 112 = a(xj+1/2)

o100 01010101010
h

h h
*0 Y-1 th Xt

h
xN 72 of 104



We discretize using central

differences
- We can use second-order differences to
approximate the derivatives. To use a grid spacing

of hwe evaluate a(x)u(x) at points midway
between the gridpoints:

(a(x)u'(x))’

+ O(h?)

ﬁ Points used to evaluate (av’) * at x ;

o100 101010101010
h

h
XO x]'_l x]h

X -

J

h
X
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We discretize using central
differences

+ To evaluate (au’) ;. ,, we must sample a(x)at the
point x; . 1, and use second order differences:
, . u]+1_u] , ~ Mj—uj_l
(au )lxj+1/2 S div12T (au )lxj—1/2 “di-127

where
a; 1 =a(X; 1)

Points used to . .
evaluate v'at Points used to evaluate (au’) * at x .

J
Xi1/2

*—+—0—+——0—+——0+—e—1—0+—"0 1010
Jh 7 N

h
X X
0 j—-1 X 7+1 AN 740t 104



The basic stencil is given

- We combine the differences for v’and for (au’)’
to obtain the operator

—ajy12 7 Tai_inT

~(a(x) u (x)))" (x)) =

and the problem becomes, for 1<;<N-1
1
;( —a;_jpu;_y+(a;_ypta; p)up—a;puig) =f;

uozuNzo
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Coarsening the variable
coefficient problem

» A reasonable approach is to use a standard
multigrid algorithm with linear interpolation, full
weighting, and the stencil

2 _ Lo o 2h 2h _ 2k
A4 _(2h)2( ailyy @ liyptaiiyy a4ty )

h h
azj+12 1t 425432
2

2h _
where ary12 =

o+—0—+——0 01— 1—01—0 1010

O\'KQ

- The same stencil can be obtained via the Galerkin
relation 76 of 104




Standard multigrid degrades if
a(x) is highly variable

» It can be shown that the variable coefficient
discretization is equivalent to using standard multigrid
with simple averaging on the Poisson problem on a certain
variable-mesh spacing.

-(ax)v) = f O—@—@ O O o—0—0—9©

-u'lx) = f @—@ o0 o—0—90 o—0

»  But simple averaging won't accurately represent smooth
components if x4 ., is close to x4; but far from x4,,, .

h h h
A5 X241 XD +2

2 o
XJ Xi+1
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One remedy is to apply operator
interpolation

Assume that relaxation does not change smooth
error, so the residual is approximately zero.
Applying at x4, yields

h h h h h h h
—ayiyiped; * (a0 * a3 3p)edi 1 — a5 43003 42

h? =0

Solving for 4

h 2h o . h 2h
h azji+12 € T A2 4+32€/+1
ex. —
2 +1 Jh 4k
2j+1/2 2j +3/2
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Thus, the operator induced
interpolation is

h _ ,2h
sz — Vj
h oh o h 2h
h azyi+12V; T a2 432V +1
V2i+1 =

h h
azi+12 T 42 +3/2

* And, as usual, the restriction and coarse-grid

operators are defined by the Galerkin relations

2h h T
A2 = gt 2 = (1)
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A Variable coefficient example

+ We use V(2,1) cycle, full weighting, linear interpolation.

- Weuse a(x)=psin(knx) and a(x) = p rand (kmx)

a(x)=psin(kmx)

a(x) = p rand (kTx)

k=3 k=25 k=50 k=100 k=200 k=400
0 0.085 0.085 0.085 0.085 0.085 0.085 0.085
0.25 0.084 0.098 0.098 0.094 0.093 0.083 0.083
0.5 0.093 0.185 0.194 0.196 0.195 0.187 0.173
0.75 0.119 0.374 0.387 0.391 0.39 0.388 0.394
0.85 0.142 0.497 0.511 0.514 0.514 0.526 0.472
0.95 0.191 0.681 0.69 0.694 0.699 0.745 0.672
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Algebraic multigrid:
for unstructured-grids

e Automatically defines coarse "grid"

® AMG has two distinct phases:
— setup phase: define MG components
— solution phase: perform MG cycles

® AMG approach is opposite of geometric MG

— fix relaxation (point Gauss-Seidel)

— choose coarse "grids” and prolongation, P, so
that error not reduced by relaxation is in
range(P)

— define other MG components so that coarse-
grid correction eliminates error in range(P)
(i.e., use Galerkin principle)

(in contrast, geometric MG fixes coarse grids,
then defines suitable operators and smoothers)

\\\\\\\\\“\

\\\\\
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\\\\.\\
N

\\\\\\
W
N
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AMG has two phases:

Setup Phase
- Select Coarse “grids,” Q" T 1, m=1,2, ...

- Define interpolation, [nn;+ 1, M= 1,2, ...

- Define resTr'icTion and coarse-grid operators

[’17711+1_( +1) Am+1—[nn/;l+1A ]m+1
® Solve Phase

— Standard multigrid operations, e.g., V-cycle, W-cycle,

FMG, FAS, etc

e Note: Only the selection of coarse grids does not
parallelize well using existing techniques!
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AMG fundamental concept:
Smooth error = "small” residuals

- Consider the iterative method error recurrence
F+l = (071 4) &
* Error that is slow to converge satisfies

(0 ' Ye=e = O 'Ue=0
= r=_0

* More precisely, it can be shown that smooth error

satisfies
HrHD_l « lel, (1)
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AMG uses strong connection to

determine MG components

+ It is easy to show from (1) that smooth error

. (2)
safisties <Ae,e> « <De,e>

+ Define 7 is strongly connected to j by

—l.jze mkii{_aik}’ 0 <0<

- For M-matrices, we have from (2)

1 _al'j el' - ej 2
EZ( 2a--j( €; j « 1
[ #] I

- implying that smooth error varies slowly in the
direction of strong connections
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+ The set of coarse-grid variables used to

Some useful definitions

+ The set of strong connections of a variable %; |,
that is, the variables upon whose values the value
of u; depends, is defined as
S.:=<j:—-a.>0mx —a;
! {] Y j#i U}
+ The set of poi;\’rs strongly connected fo a variable
is denoted: §; ={j:jeS;}
The set of coarse-grid variables is denoted C.
+ The set of fine-grid variables is denoted F.

interpolate the value of the fine-grid variable Ci

is denoted U; .
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Choosing the Coarse 6rid

Two Criteria

- (€C1) For each i € F each poinTi S Si should either be
in C or should be strongly connected to at least one point

in Ci

- (€2) ( should be a maximal subset with the property
that no two (C-points are strongly connected to each
other.

Satisfying both (C1) and (C2) is sometimes
impossible. We use (C2) as a guide while enforcing
(C1). 87 of 112



Selecting the coarse-grid points

C-point selected
(point with
largest “value")
Neighbors of
C-point
become F-
points
Next C-point
selected (after
updating “values")
F-points
selected, etc.
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Examples: Laplacian Operator
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Prolongation is based on smooth
error, strong connections (from
M-matrices)

Smooth error is given by:

Vl=a”el+ Z aljejz()
JEN;

Prolongation :

(Pe), =\ aye  ieF
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Prolongation is based on smooth
error, strong connections (from
M-matrices)

Sets:
C Strongly connected C-pts.

\)
D % Strongly connected / -pts.
Dl- === Weakly connected points.

The definition of smooth error,

allel = — Z al'j ej

J#I
Gives:
™ aje; =~ Z aye = Qa4 = D e
JjeG jeD; jeD’

Strong C Strong F
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Finally, the prolongation
weights are defined

* In the smooth-error relation, use €¢; = €¢; for weak
connections. For the strong F-points use :

¢ :[ 2 “.//c‘)/c] /[ 2 ",/k]

/\' S CI /\'E Cl

yielding the prolongation weights:

i
i+ Y
l] EDS Z Clkm
J lmeCl.
Wl'j = —
djj + Z Ain
ne DY
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AMG setup costs:
a bad rap

* Many geometric MG methods need to compute
prolongation and coarse-grid operators

* The only expense in the AMG setup phase is
the coarse grid selection algorithm

AMG setup phase is only 10-25% more
expensive than in geometric MG and may be
considerably less than that!
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AMG Performance:
Sometimes a Success Story

* AMG performs extremely well on the model
problem (Poisson’s equation, reqular grid)- optimal
convergence factor (e.g., 0.14) and scalability with
increasing problem size.

* AMG appears to be both scalable and efficient on
diffusion problems on unstructured grids (e.g., 0.1-
0.3).

* AMG handles anisotropic diffusion coefficients on
irregular grids reasonably well.

* AMG handles anisotropic operators on structured
and unstructured grids relatively well (e.g., 0.35).
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So, what could go wrong?
Strong F-F connections: weights are dependent on

each other
For point [ the value ¢;is interpolated from &y, k.,
and is needed to make the interpolation weights for
approximating ¢;
For point J the value e¢;is interpolated from &, 42 ,
and is needed to make the interpolation weights for
approximating e;
It’s an implicit system!

kle C]
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Is there a fix?

* A Gauss-Seidel like iterative approach to weight
definition is implemented. Usually two passes
suffice. But does it work?

® Frequently, it does: (-, orgence factors for

Laplacian, stretched quadrilaterals
__________ theta Standard Iterative

Ax — IOAJ/ 0.25 0.47 0.14

0.5 0.24 0.14

. 0.25 0.83 0.82
Ax = lOOAy 0.5 053 0.23
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AMG for systems

How can we do AMG on systems?

Ay Ap\(u) _(f

App Ap )V g
Naive approach: "Block" approach (block Gauss-Seidel,
using scalar AMG to "solve” at each cycle)

ue (Ay) (f = A
v e (Ay) (g - Asqu)

® Great Ideal Except that it doesn't workl (relaxation
does not evenly smooth errors in both unknowns)
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AMG for systems: a solution

* To solve the system problem, allow interaction
between the unknowns at all levels:

k k
A% AT
14k::( 21 i?

k
(Jk+1) 0
and a1 = ! L
0 (Ik+1) v

» This is called the "unknown" approach.
* Results: 2-D elasticity, uniform quadrilateral

T reshspacing 0125 00625 003135 0.015625
Convergence factor] 02 035 0.42 0.44

98 of 112



How's it perform (vol I)?

Regular grids, plain, old, vanilla problems

The Laplace Operator:

Convergence Time |Setup
Stencil per cycle |Complexity |per Cycle | Times
5-pt 0.054] 2.21| 0.29] 1.63
5-pt skew 0.067 2.12 0.27| 1.52
9-pt (-1,8) 0.078 1.30| 0.26| 1.83
9-pt (-1,-4,20) 0.109 1.30 0.26 | 1.83
Anisotropic Laplacian:
0.001| 0.01 0.1 0.5 1 2 10 100\ 1000
Convergence/cycle| 0.084| 0.093| 0.058| 0.069| 0.056| 0.079| 0.087| 0.093| 0.083
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How's it perform (vol IT)?

Structured Meshes, Rectangular Domains

- 5-point Laplacian on regular rectangular grids
Convergence factor (y-axis) plotted against number of nodes (x-axis)
0.16 -
0.14
0.12
0.1
0.08
0.06
0.04 -
0.02 -
0 | |
0 500000 1000000

—= 0.146
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How's it perform (vol IIT)?

Unstructured Meshes, Rectangular Domains

» Laplacian on random unstructured grids (regular
triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

Convergence factor (y-axis) plotted against number of nodes (x-axis)
0.3 1

0.25 - —= 0.253

0.2
0.15
0.1

0.05

0 20000 40000 60000
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How's it perform (vol IV)?
Isotropic diffusion, Structured/Unstructured Grids

Ve(d(x,y) Vu) onstructured, unstructured
grids.

o
o G = G N WO,

© © 00w ~N~NOO”
T 9 T Q9 T 9 T O

N=16642 N=66049 N=13755 N=54518
Structured Structured Unstruct. Unstruct.

Problems used: “a" means parameter c=10, "b" means ¢c=1000
1.0 0.125< max{|x—0.5/,

6: d(x,y) =10+c¢ ‘x—y‘ 8 d(x,y) ={ y—O.S‘}SO.ZS

C otherwise

7: d(x,y) = {1'0 x<05 d(x.) :{1.0 0.125< \(x =052+ (y=0.5)2 <0.25

c x>0.5 c otherwise
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How's it perform (vol V)?

Laplacian operator, unstructured Grids

Convergence factor

0.3 -
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0.15 A
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Multigrid Rules!

We conclude with a few observations:

- We have barely scratched the surface of the myriad ways
that multigrid has been, and can be, employed.

- With diligence and care, multigrid can be made to handle many
types of complications in a robust, efficient manner.

- Further extensions to multigrid methodology are being sought
by many people working on many different problems.



