
Chapter 9

Examples/Applications

Numerical Simulation of the Rayleigh-Bernard Problem

In this example we consider thermal convection in a thin layer of fluid
heated from below. We want to analyze numerically its stability char-
acteristics.
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Rayleigh (1916) formulated the theory of convective instability of a
layer of fluid between horizontal plates motivated by the experiments
of Bernard (1900).

The governing equations

Continuity:
∂ρ

∂t
+

∂(ρuj)

∂xj
= 0

Navier-Stokes:

ρ
Dui

Dt
=

∂σij

∂xj
− gρδi2

1
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where

σij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)

Energy:

ρ
DE

Dt
=

∂

∂xj

(
k

∂θ

∂xj

)
− p

∂uj

∂xj
+ Φ

where E = cvθ (perfect gas) or E = cθ (liquid) and the rate of viscous
dissipation per unit volume is:

Φ =
1

2
µ

(
∂ui

∂xj

+
∂uj

∂xi

)2

− 2

3
µ

(
∂uk

∂xk

)2

The Boussinesq approximation is based on the assumption that in cer-
tain flows where the temperature varies little, the corresponding density
varies little but the motion is driven due to buoyancy forces, i.e.,

ρ = ρ0[1 − β(θ − θ0)]

where β(K−1) is the coefficient of thermal expansion. For a perfect gas
β = 1

T0
≈ 3 × 10−3K−1. For a liquid β ≈ 5 × 10−4K−1. Therefore for

∆θ = ∆T = θ0 − θ < 10K, then

ρ − ρ0

ρ0
= β(θ0 − θ) � 1.

However, the term g(ρ− ρ0) ∼ ρDu
Dt

and thus it cannot be neglected in
the momentum equation. Also, for most fluids

1

µ

dµ

dθ
< β

etc. so all other physical properties are taken at the reference temper-
ature θ0. The Boussinesq equations are then:
Continuity:

∂uj

∂xj
= 0
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since we neglect
1

ρ

dρ

dt
∼ O(β)

and thus the stress tensor is like the incompressible one, i.e.,

σij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xj

)

then Navier-Stokes:

Dui

Dt
= − ∂

∂xi

(
p

ρ0
+ gz

)
− βg(θ0 − θ)δi2 + ν∇2ui

The energy equation is simplified similarly. First, the dissipation term
is small compared to the convective term, i.e.,

Φ

ρD(cθ)
Dt

∼
µ
(

V
d

)2

ρ0cV
∆θ
d

=
ν

c

V

(θ0 − θ1)d

For liquids, ν
c
∼ 10−9; gases ν

c
∼ 10−8. Also V

d∆θ
is finite (unless we

have d ∼ O(micron)). Therefore we can neglect the dissipation term.
The heating term due to compression is:

−p
∂uj

∂xj
=

p

ρ

Dρ

Dt
(continuity)

= βp
Dθ

Dt
(Boussinesq)

For a perfect gas:

p = (cp − cv)ρθ

β =
1

θ

and therefore:

ρ
DE

Dt
+ p

∂ui

∂xj

∼= cpρ
Dθ

Dt

so it is not negligible for gases. For typical liquids it is because the
heat transfer scales with the density of the fluid so this contribution is
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small compared to the gas where density is typically 1000 times smaller.
However, Boussinesq neglects this term to get:

Dθ

Dt
= α∇2θ

If we non-dimensionalize with ∆T , d, d2/α (time), then:

N − S :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dui

Dt
= − ∂p

∂xi
+ PrRaΘδi2 + Pr∇2ui

∂uj

∂xj

= 0

ui(x, y =
0
1

, t) = 0 ; rigid-rigid

Temp :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

DΘ

Dt
= ∇2Θ

Θ(x, y = 0, t) = 0

Θ(x, y = 1, t) = −1

where

Θ =
T − T0

∆T
, Ra =

gβ∆Td3

να
, Pr =

ν

α
Ra = Rayleigh number: ratio of buoyancy to viscous forces. Note that

ui = 0, Θ = −y

corresponding to pure conduction. In the limit of zero viscosity this
solution is unstable (infinite Rayleigh number). For diffusion present
there is a certain amount that is required for stability; below that there
is again an instability. This corresponds to a critical Rayleigh number
Rac above which the conduction solution is no longer physically rel-
evant. To analyze this we introduce infinitesimal disturbances to the
base state, i.e.,

ui = εu
′
i + . . .

Θ = −y + εθ′ + . . .
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Keeping only linear terms of order O(ε) we obtain:

(1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂
v′

∂t
= −∇p′ + PrRaθ′ŷ + Pr∇2
v′

∇ · 
v′ = 0

v′
(
x, y =

0
1

, t

)
= 0

(2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂θ′

∂t
− v′ = ∇2θ′

θ′
(
x, y =

0
1

, t

)
= 0

Note that this linearized system predicts only whether natural convec-
tion will occur, but says nothing about the final state which corresponds
to a finite amplitude response, obviously a nonlinear effect.

To simplify notation, we drop the primes in the following. In order
to solve this system numerically we can either set up an eigenvalue
problem or an initial value problem to discretize.

To obtain an eigenvalue problem we eliminate all unknowns but the
vertical velocity component v. Taking the ∇× of (1):

∂
ω

∂t
= RaPr(∇θ × ŷ) + Pr∇2
ω

and taking the ∇× of this, we have:

∂

∂t
∇2
v = RaPr

(
∇2θŷ −∇∂θ

∂y

)
+ Pr∇4
v

and the vertical component v:

∂

∂t
∇2v = RaPr

∂2θ

∂x2
+ Pr∇4v

Also:
∂θ

∂t
− v = ∇2θ

Introduce normal modes, i.e.,

v = ṽ(y)eikxeσt

θ = θ̃(y)eikxeσt



6 George Em Karniadakis

therefore:

σ(D2 − k2)ṽ = −RaPrk2θ̃ + Pr(D2 − k2)2ṽ

σθ̃ − ṽ = (D2 − k2)θ̃ ⇒ (D2 − k2 − σ)θ̃ = −ṽ

where

D ≡ d

dy

or {
(D2 − k2)[D2 − k2 − σ/Pr]ṽ = k2Ra θ̃

(D2 − k2 − σ)θ̃ = −ṽ

or {
(D2 − k2)(D2 − k2 − σ/Pr)ṽ = k2Raθ̃
(D2 − k2)(D2 − k2 − σ)(D2 − k2 − σ/Pr)ṽ = −k2Ra ṽ

The equation for ṽ is of 6th-order and thus we need 3 b.c. at each end.
From u = 0 at y = const and continuity ⇒ ∂v

∂y
= 0 so b.c.

ṽ =
∂ṽ

∂y
= θ̃ = 0

on each rigid boundary or

ṽ = Dṽ = θ̃ = 0

Using the first equation at the boundary we obtain:

D4ṽ − (2k2 + σ/Pr)D2ṽ = 0

Note in general σ = σ(k, Ra, Pr). However, the neutral stability is
defined for σ = 0 (σ > 0, instability), and the above system is for the
critical state:

(D2 − k2)3ṽ = −k2Racṽ

ṽ = Dṽ = (D2 − k2)2ṽ = 0

thus, the critical state does not depend on Pr!
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The solution consists of sines and exponentials but the eigenvalue rela-
tion is transcendental and thus it is difficult to present a simple explicit
solution for σ(k, Ra). A general (even) solution is of the form:

ṽ = A0 cos
[
q0

(
y − 1

2

)]
+ A cosh

[
q
(
y − 1

2

)]

+ A∗ cosh
[
q∗

(
y − 1

2

)]

where
A0 ε � A, A∗ε C

q0 = k(τ − 1)1/2, q = q+ + iq−

q± = k
[
1

2
(1 + τ + τ 2)1/2 ±

(
1 +

1

2
τ
)]1/2

τ ≡
(

Ra

k4

)1/3

To satisfy the b.c. we plug-in to get the eigenvalue relation:

Im
{(√

3 + i
)
q tanh

1

2
q
}

+ q0 tan
1

2
q0 = 0

Solution gives: Rac
∼= 1708 for kc = 3.117 and thus the (horizontal)

wavelength of the disturbance at the onset of instability is

2πd

kc
= 2.016 d

Numerical Formulation

Alternatively, we can solve an IVP by introducing the following expres-
sions into the governing equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u
v
p
θ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ = Re

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eikx

⎡
⎢⎢⎢⎢⎣

û(y, t)
v̂(y, t)
p̂(y, t)

θ̂(y, t)

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and integrate in time for û, v̂, p̂, θ̂.
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We can choose any of the schemes we have studied so far. To de-
couple velocity/temperature we can use an explicit 2nd-order Adams-
Bashforth. We then treat the remaining terms implicitly using a stag-
gered grid where û, v̂, θ̂ are on the integer-point grid and p̂ on the half-
point grid. Crank-Nicolson will give an overall O(∆t2) scheme, and
Green’s functions will give efficiency. The code can be written using
complex arithmetic for convenience.

In the following, we give the discrete equations:

I. Convective Terms:

Use Adams Bashforth, 2nd-order:

x: ˆ̂u
n+1

i = ˆ̂u
n

i

y:
ˆ̂v

n+1

i − v̂n
i

∆t
= Pr · Ra

{
3

2
θ̂n

i − 1

2
θ̂n−1

i

}

Temp :
ˆ̂
θ

n+1

i − θ̂n
i

δt
=

3

2
v̂n

i − 1

2
v̂n−1

i

for i = 0, . . . , N

Divergence after this step:

ˆ̂
d

n+1

i+1/2 = ik
ˆ̂u

n+1

i+1 + ˆ̂u
n+1

i

2
+

ˆ̂v
n+1

i+1 − ˆ̂v
n+1

i

∆y

for i = 0, . . . , N ′.

For this splitting scheme used no b.c. are imposed on ˆ̂u, ˆ̂v,
ˆ̂
θ and con-

tinuity is not necessarily satisfied.

II. Stokes solver:

The momentum equations, energy equation and continuity discritized
according to the suggested staggered mesh are:

x:
1

Pr

ûn+1
i − ˆ̂u

n+1

i

∆t
= −ik

p
n+1/2
i+1/2 + p

n+1/2
i−1/2

2
· 1

Pr

+

⎛
⎝ û

n+1/2
i−1

∆y2
−

(
2

∆y2
+ k2

)
û

n+1/2
i +

û
n+1/2
i+1

∆y2

⎞
⎠
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i = 1, . . . , N ′ and ûn+1
0 = ûn+1

N = 0

y:
1

Pr

v̂n+1
i − ˆ̂v

n+1

i

∆t
= −

⎛
⎝p

n+1/2
i+1/2 − p

n+1/2
i−1/2

∆y

⎞
⎠+

⎡
⎣ v̂

n+1/2
i−1

∆y2
−

(
2

∆y2
+ k2

)
v̂

n+1/2
i +

v̂
n+1/2
i+1

∆y2

⎤
⎦

i = 1, . . . , N ′ and v̂n+1
0 = v̂n+1

N = 0

Continuity:

d̂n+1
i+1/2 ≡ ik

ûn+1
i+1 + ûn+1

i

2
+

v̂n+1
i+1 − v̂n+1

i

∆y
= 0

i = 0, . . . N ′

Temperature:

θ̂n+1
i − ˆ̂

θ
n+1

i

∆t
=

θ̂
n+1/2
i−1

∆y2
−

(
2

∆y2
+ k2

)
θ̂

n+1/2
i +

θ̂
n+1/2
i+1

∆y2

where

û
n+1/2
i =

ûn+1
i + ûn

i

2
; v̂

n+1/2
i =

v̂n+1
i + v̂n

i

2

θ̂
n+1/2
i =

θ̂n+2
i + θ̂n

i

2

If we take ∂
∂x

(Mx) + ∂
∂y

(My) we get:

d̂n+1
i+1/2 − ˆ̂

d
n+1

i+1/2

Pr∆t
=

{
− 1

∆y2

(
p

n+1/2
i+3/2 − 2p

n+1/2
i+1/2 + p

n+1/2
i−1/2

)

+
k2

4

(
p

n+1/2
i+3/2 + 2p

n+1/2
i+1/2 + p

n+1/2
i−1/2

)}

+
1

2

⎛
⎝ d̂n+1

i−1/2

∆y2
−

(
2

∆y2
+ k2

)
d̂n+1

i+1/2 +
d̂n+1

i+3/2

∆y2

⎞
⎠

+
1

2

⎛
⎝ d̂n

i−1/2

∆y2
−

(
2

∆y2
+ k2

)
d̂n

i+1/2 +
d̂n

i+3/2

∆y2

⎞
⎠
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Assume that at the time step (n + 1) continuity is already satisfied for
previous time step, therefore dn

i+1/2 = 0. Then if we satisfy the discrete
momentum equation and the Poisson equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lp
n+1/2
i+1/2︷ ︸︸ ︷

1

∆y2

(
p

n+1/2
i+3/2 − 2p

n+1/2
i+1/2 + p

n+1/2
i−1/2

)
− k2

4

(
p

n+1/2
i+3/2 + 2p

n+1/2
i+1/2 + p

n+1/2
i−1/2

)
⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

ˆ̂
d

n+1

i+1/2

∆tPr
the remaining parts give the equation:

d̂n+1
i+1/2

Pr∆t
=

1

2

⎛
⎝ d̂n+1

i−1/2

∆y2
−

(
2

∆y2
+ k2

)
d̂n+1

i+1/2 +
d̂n+1

i+3/2

∆y2

⎞
⎠ , i = 1, . . . , N ′ − 1

d̂n+1
1/2 = d̂n+1

N ′+1/2 = 0

with the trivial solution d̂n+1
i+1/2 = 0. Now, the full scheme is as follows:

I. Solve for ˆ̂u, ˆ̂v,
ˆ̂
θ using A/B (E-F as start up)

Form the divergence
ˆ̂
d

n+1

i+1/2

II. Solve

Lp
n+1/2
i+1/2 =

ˆ̂
d

n+1

i+1/2

Pr∆t
i = 1, . . . , N ′ − 1

b.c.
d̂n+1

1/2 = 0 d̂n+1
N ′+1/2 = 0

III. For all interior points i = 1, . . . , N ′ solve

ˆ̂
û

n+1

i − ˆ̂ui

Pr∆t
= −ik

p
n+1/2
i+1/2 + p

n+1/2
i−1/2

2
≡ −Dxp

n+1/2
i+1/2

ˆ̂
v̂

n+1

i − ˆ̂v
n

i

Pr∆t
= −

⎛
⎝p

n+1/2
i+1/2 − p

n+1/2
i−1/2

∆y

⎞
⎠ = −Dyp

n+1/2
i+1/2
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IV. For all interior points i = 1, . . . , N ′ solve

⎛
⎝ û

n+1/2
i−1

∆y2
−

(
2

∆y2
+ k2 +

2

Pr∆t

)
û

n+1/2
i +

û
n+1/2
i+1

∆y2

⎞
⎠ =

−ûn
i − ˆ̂

û
n+1

i

Pr∆t

û0 = ûN = 0⎛
⎝ v̂

n+1/2
i−1

∆y2
−

(
2

∆y2
+ k2 +

2

Pr∆t

)
v̂

n+1/2
i +

v̂
n+1/2
i+1

∆y2

⎞
⎠ =

−v̂n
i − ˆ̂

v̂
n+1

i

Pr∆t

v̂0 = v̂N = 0

The scheme, now, proceeds using the Green’s function implemen-
tation.

I. Pre-Procession: After we solve the Laplace equation for pressure,
the RHS of the Helmoltz solvers for Uk

i , V k
i can be formed. The

coefficients for the Helmoltz operator are:

1

∆y2
,−

(
2

∆y2
+ k2 +

2

Pr · ∆t

)
,

1

∆y2

II. Time-stepping-Intermediate Fields:

• Solve discrete Poisson equation:

LP I
i+1/2 =

ˆ̂
d

n+1

i+1/2

Pr · ∆t

• Update velocities:

Û I
i − ˆ̂u

n+1

i

Pr∆t
= −DxP

I
i+1/2

V̂ I
i − ˆ̂v

n+1

i

Pr · ∆t
= −DyP

I
i+1/2

• Viscous step:(
2

∆y2
−

(
2

∆y2
+ k2 +

2

Pr∆t

)
+

2

∆y2

)
U I

i = − ûn
i + Û I

Pr∆t
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with b.c.

U I
0 = U I

N = 0

V I
0 = V I

N = 0

Apply superposition:

û
n+1/2
i = U I

i + α1U
1
i + α2U

2
i etc.

and then find:
ûn+1

i = 2û
n+1/2
i − ûn

i , etc.

Similarly for temperature:

θn+1
i − θ̂n+1

i

∆t
= ∇2 θn+1

i + θn
i

2
≡ ∇2θn+1/2

or

2
(

θn+1
i +θn

i

2

)
− 2θ̂n+1

i

∆t
= ∇2θ

n+1/2
i

or (
∇2 − 2

∆t

)
θ

n+1/2
i =

−2

∆t
θ̂n+1

i

and then find

θn+1
i = 2θ

n+1/2
i − θn, i = 1, . . . , N ′

Question (a): The stability curve is shown in figure 1. The resolution
used was 21 grid points, ∆t = 0.01 and final real time = 2.0. The
min Racr

∼= 1721.5 and kcr = 3.10/3.20 are compared with the exact
numbers given by analytical work k = 3.17, Ra = 1708 (Reference
Physical Fluid Dynamics, D.J. Tritton, pg. 216). The locus of σ =
0 separating the stable region with σ < 0 from the unstable region
with σ > 0 is independent of the Prandtl number. This is verified
numerically but also can be anticipated since the inertia term Du

Dt
is zero

at this curve since both the temporal acceleration ∂u
∂t

and the convective
term is zero because there is no mean velocity field and second order
terms in the perturbation velocity field are neglected.

(b) In figure 2 the asymptotic value of σ (the eigenvalue) as a function
of the resolution is given. The value of σ predicted to be σ = 4.3365.
(Final real time was 2.5, ∆t = 0.01)




