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Homework: you should start

Hw # 4: Finite difference method + MPI for Helmholtz equations

If you need a multi-core machine: apply for a CCV account
https://www.ccv.brown.edu/
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Conservation law of mass: continuity equation

Total mass flows out of the volume V (per unit time) by surface integral∮
ρv · df, (1)

where ρ density, v velocity and df is along the outward normal.
The decrease of the mass in the volume (per unit time)

− ∂

∂t

∫
ρdV . (2)

For a mass conservation, we have an equality

− ∂

∂t

∫
ρdV =

∮
ρv · df =

∫
∇ · (ρv)dV , (3)

which is valid for an arbitrary V . The continuity equation reads

∂ρ

∂t
+∇ · (ρv) = 0. (4)
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Conservation law of momentum: Euler equations

Total pressure force acting on the volume (surface to volume integral)

−
∮

pdf = −
∫
∇pdV . (5)

For a unit of volume, momentum equations in Lagrangian form read

ρ
dv

dt
= −∇p or

dv

dt
= −∇p

ρ
. (6)

Considering the particle derivative is related to the partial derivatives as

d

dt
=

∂

∂t
+ v · ∇, (7)

the Euler equations in Eulerian form read

∂v

∂t
+ v · ∇v = −∇p

ρ
. (8)
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Conservation law of momentum: Navier-Stokes equations

For real fluids, we need to add in viscous stress due to irreversible process
and assume that the viscous stress depends only linearly on derivatives of
velocity.
Without derivation, the Navier-Stokes equations read

∂v

∂t
+ v · ∇v = −1

ρ
[∇p + η4 v + (ζ + η/3)∇∇ · v] (9)

For an incompressible fluid ρ = const. and ∇ · v = 0.
Therefore, the momentum equations simplify to

∂v

∂t
+ v · ∇v = −1

ρ
(∇p + η4 v) . (10)

For a compressible fluid, an equation of state is called for

p = p(ρ,T = T0). (11)
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Mesh-based discretizations

Prof. Karniadakis will cover the mesh-based methods in other lectures

finite difference method

spectral h/p element method

... ...
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Mesh-free discretizations: mesh-free = mess-free?

Some particle methods

smoothed particle hydrodynamics (SPH)
moving least square methods (MLS)
vortex method
Voronoi tesselation
... ...

mesh-free ≈ mess-free

no mesh generation
Lagrangian, no v · ∇v
complex moving boundary
incorporation of new physics
... ...
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Integral representation of a function

It was invented in 1970s (author?) [12, 8].

Given a scalar function f (r) of spatial coordinate r , its integral
representation reads

f (r) =

∫
f (r ′)δ(r − r ′)dr ′, (12)

where the Dirac delta function reads

δ(r − r ′)

{
∞, r = r ′

0, r 6= r ′
(13)

and the constraint of normalization is∫ ∞
∞

δ(r)dr = 1. (14)
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SPH 1st step: smoothing or kernel approximation

(author?) [8]; (author?) [12]

Replace δ with another smoothly weighting function w :

f (r) ≈ fk(r) =

∫
f (r ′)w(r − r ′, h)dr ′, (15)

where kernel w has properties

1 smoothness

2 compact with h as parameter

3 limh→0 w(r − r ′, h) = δ(r − r ′)

4
∫

w(r − r ′, h)dr ′ = 1

5 symmetric

6 ... ...

compact: B-splines, Wendland functions ...
(author?) [15, 16, 19]

Gaussian: 1
a
√
π

e−r
2/a2
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Compact kernel and its normalization

a cubic function as reads (h = 1 for simplicity)

w(r) =

{
CD(1− r)3, r < 1;
0, r ≥ 1.

(16)

If we require the constraint of normalization in two dimension∫ 2π

0

∫ 1

0
C2(1− r)3rdrdθ = 1⇐⇒ C2 =

10

π
(17)

a piecewise quintic function reads

w(r) = CD


(3− s)5 − 6(2− s)5 + 15(1− s)5, 0 ≤ s < 1
(3− s)5 − 6(2− s)5, 1 ≤ s < 2
(3− s)5, 2 ≤ s < 3
0, s ≥ 3,

(18)

where s = 3r/h and C2 = 7/(478πh2) and C3 = 1/(120πh3).

f (r) = fk(r) + error(h)
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SPH 2nd step: summation or particle approximation

Integral ⇐⇒ summation

fk(r) =

∫
f (r ′)w(r − r ′, h)dr ′(19)

fs(r) =

Nneigh∑
i

fiw(r − ri , h)Vi , (20)

where Vi is a distance, area and volume
in 1D, 2D, and 3D, respectively.
Therefore,

fk(r) ≈ fs(r) (21)

fk(r) = fs(r) + error(∆r , h)

summation within compact support
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An example: evaluation of density and arbitrary function

∀i of particle index, mass mi , density ρi , and Vi = mi/ρi .

fs(r) =

Nneigh∑
i

fiw(r − ri , h)Vi =

Nneigh∑
i

mi

ρi
fiw(r − ri , h). (22)

What is the density at an arbitrary position r?

ρs(r) =

Nneigh∑
i

mi

ρi
ρiw(r − ri , h) =

Nneigh∑
i

miw(r − ri , h). (23)

What is the density of a particle at rj?

ρs(rj) =

Nneigh∑
i

miw(rj − ri , h). (24)

What is the value of a function of a particle at rj?

fs(rj) =

Nneigh∑
i

fi
mi

ρi
w(rj − ri , h) =

Nneigh∑
i

fiWji = fj (25)
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Gradient of a function

f (r) ≈ fk(r) =

∫
f (r ′)w(r − r ′, h)dr ′ (26)

⇓
∇r f (r) ≈ ∇r fk(r) = ∇r

∫
f (r ′)w(r − r ′, h)dr ′ (27)

⇓

∇r fk(r) =

∫
∇r f (r ′)w(r − r ′, h)dr ′ +

∫
f (r ′)∇rw(r − r ′, h)dr ′ (28)

⇓
∇r fk(r) =

∫
f (r ′)∇rw(r − r ′, h)dr ′ (29)

⇓

∇r f (r) ≈ ∇r fk(r) ≈ ∇r fs(r) =

Nneigh∑
i

mi

ρi
f (r ′)∇rw(r − r ′, h) (30)
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Other first derivatives

∇r · f (r) ≈ ∇r · fk(r) ≈ ∇r · fs(r) =

Nneigh∑
i

mi

ρi
f (r ′) · ∇rw(r − r ′, h) (31)

∇r×f (r) ≈ ∇r×fk(r) ≈ ∇r×fs(r) =

Nneigh∑
i

mi

ρi
f (r ′)×∇rw(r−r ′, h) (32)
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Second derivatives

Note that we have following identity (author?) [4]∫
dr′
[
f (r′)− f (r)

] ∂w(|r′ − r|)
∂r ′

1

rij
eij

[
5

(r′ − r)α(r′ − r)β

(r′ − r)2
− δαβ

]
= ∇α∇βf (r) +O(∇4fh2). (33)

Therefore,

1

ρi

(
∇2v

)
= −2

Nneigh∑
j

mj

ρiρj

∂wij

∂r
vij (34)

1

ρi
(∇∇ · v) = −

Nneigh∑
j

mj

ρiρj

∂wij

∂r
(5eij · vijeij − vij) (35)

(36)
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Particles for hydrodynamics

continuity equation is accounted for by

ρi =

Nneigh∑
j

mjWij , ṙi = vi (37)

pressure force: −∇p/ρ

FC
i =

Nneigh∑
j

FC
ij =

Nneigh∑
j

−mj

(
pj

ρ2
j

)
∂w

∂rij
eij , (38)

bad: not antisymmetric by swapping i and j
recognize −∇p/ρ = − p

ρ2∇ρ−∇ p
ρ

FC
ij = −mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∂w

∂rij
eij , (39)
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viscous force

In general

FD
ij =

mj

ρiρj rij

∂w

∂rij

[(
5η

3
− ζ
)
vij +

(
5ζ +

5η

3

)
eij · vijeij

]
(40)

For inompression flows ∇ · v = 0, therefore,

N∑
j

5

ρiρj rij

∂wij

rij
eij · vijeij ≈

N∑
j

1

ρiρj rij

∂wij

∂rij
eij . (41)

FD
ij = 2η

mj

ρiρj rij

∂wij

∂rij
vij ≈ 10η

mj

ρiρj rij

∂wij

∂rij
eij · vijeij . (42)

Either choice is fine, but they are different.

28 / 50



Summary of SPH for isothermal Navier-Stokes equations

continuity equation:

ρi =

Nneigh∑
j

mjWij , ṙi = vi (43)

momentum equations: (author?) [4, 11]

v̇i =

Nneigh∑
j 6=i

(
FC
ij + FD

ij

)
, (44)

FC
ij = −mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∂w

∂rij
eij , (45)

FD
ij =

mj

ρiρj rij

∂w

∂rij

[(
5η

3
− ζ
)
vij +

(
5ζ +

5η

3

)
eij · vijeij

]
(46)

weakly compressible: (author?) [2, 13]

p = c2
Tρ, or p = p0

[(
ρ

ρr

)γ
− 1

]
(47)

p0 relates to an artificial sound speed cT
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Density estimate or sampling

Given a set of point particles with mass mi , what is the density estimate
for a position at r .

ρs(r) =

Nneigh∑
i

miw(r − ri , h). (48)

where kernel w has properties
1 smoothness
2 compact with h as parameter
3
∫

w(r − r ′, h)dr ′ = 1
4 symmetric
5 ... ...

Eq. (48) is more fundamental than the summation form presented early

fs(r) =

Nneigh∑
i

fi
mi

ρi
w(r − ri , h). (49)
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Least action

Define the Lagrangian L as

L = T − U, (50)

where T and U are kinetic and potential energies, respectively. For a set
of particles

L =
N∑
i

mi

(
1

2
v 2
i + ui (ρi , s)

)
(51)

Define the action as

S =

∫
Ldt. (52)

Minimizing S such that δS =
∫
δLdt = 0, where δ is a variation with

respect to particle coordinate δr. We have (author?) [17]

δS =

∫ (
∂L

∂v
· δv +

∂L

∂r
· δr
)

= 0 (53)
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Euler-Lagrangian equations

δS =

∫ (
∂L

∂v
· δv +

∂L

∂r
· δr
)

= 0 (54)

consider δv = d(δr)/dt and d/dt = ∂/∂t + v · ∇

⇓

δS =

∫ {[
− d

dt

(
∂L

∂v

)
+
∂L

∂r

]
· δr
}

dt +

[
∂L

∂v
· δr
]t
t0

= 0 (55)

assume variation vanishes at start and end times and furthermore, δr is
arbitrary. Therefore, we have the Euler-Lagrangian equations

d

dt

(
∂L

∂vi

)
− ∂L

∂ri
= 0. (56)
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Equation of motions for particles

From the Lagrangian L =
∑N

i mi

(
1
2 v 2

i + ui

)
we know

∂L

∂vi
= mivi ,

∂L

∂ri
= −

Nneigh∑
j

mj
∂uj

∂ρj

∂ρj
∂rj

(57)

Some basic thermodynamics: dU = TdS − PdV
Since V = m/ρ, so dV = −mdρ/ρ2. For per unit mass we have

du = Tds − P

ρ2
dρ. (58)

For a reversible process ds = 0, therefore ∂ui/∂ρi = p/ρ2. Put everything
known into the Euler-Lagrangian equations, we get

v̇i =

Nneigh∑
j 6=i

−mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∂w

∂rij
eij . (59)
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Conservation laws

Euler hydrodynamics

total mass M =
∑N

i mi .

total linear momentum

d

dt

N∑
i

mivi =
N∑
i

mi
dvi
dt

=
N∑
i

N∑
j

−mimj

(
pi

ρ2
i

+
pj

ρ2
j

)
∂w

∂rij
eij = 0.

(60)

total angular momentum

d

dt

N∑
i

ri ×mivi =
N∑
i

mi

(
ri ×

dvi
dt

)
(61)

=
N∑
i

N∑
j

−mimj

(
pi

ρ2
i

+
pj

ρ2
j

)
∂w

∂rij
(ri × eij) = 0. (62)

Similarly for the viscous forces.
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Errors in density estimate: kernel error

Recall the kernel approximation

ρk(r) =

∫
ρ(r′)w(r − r′, h)dr′, (63)

Expanding ρ(r ′) by Taylor series around r

ρk(r) = ρ(r)

∫
w(r − r′, h)dr′ +∇ρ(r) ·

∫
(r′ − r)w(r − r′, h)dr′

+∇α∇βρ(r)

∫
δr′αδrβw(r − r′, h)dr′ + O(h3). (64)

Recall
∫

w(r − r′, h)dr′ = 1 and odd terms vanish due to symmetric w ,

ρ(r) = ρk(r) + O(h2). (65)
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Errors for a function f : kernel error and summation error

Similarly as for density estimate:

f (r) = fk(r) + O(h2). (66)

Recall the particle approximation or summation form

fk(ri ) ≈ fs(ri ) =

Nneigh∑
j

mj

ρj
fjw(ri − rj , h). (67)

Let us do Taylor series on f (rj) around ri

fs(ri ) = fi

Nneigh∑
j

mj

ρj
w(rij , h) +∇fi ·

Nneigh∑
j

rji
mj

ρj
w(rij , h) + O(h2). (68)

To have error of O(h2), we need

N∑
j

mj

ρi
w(rij) = 1,

N∑
j

rji
mj

ρi
w(rij) = 0, (69)

which is not guranteed in practice (depends on configurations, ∆x , and h).
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Challenges

error analysis due to particle configurations

consistency and conservation at the same time

convergence for a practical purpose

coarse-graining from molecular dynamics
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Algorithmic similarity: pairwise forces within short range rc

in a nutshell, ∀ particle i in SPH, SDPD, DPD, or MD, the EoM:

v̇i =
∑
j 6=i

(
FC
ij + FD

ij + FR
ij

)
(70)

options for different components

weighting kernel or potential gradient in MD
equation of state
density field
thermal fluctuations
canonical ensemble / NVT: thermostat
... ...

SPH: (author?) [14]

SDPD: (author?) [4]

DPD: (author?) [10]; (author?) [5]; (author?) [9]

MD: (author?) [1]; (author?) [7]; (author?) [6]; (author?) [18]
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academic toy: several interesting elements

∼ 12,000 SDPD particles (author?) [3]

hypnotized?
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