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@ Background @ Background

@ hydrodynamic equations
@ numerical methods

© Mathematics of smoothed particle hydrodynamics
@ some facts and basic mathematics
@ kernel and particle approximations of a function
@ first and second derivatives

© Particles for hydrodynamics
@ continuity and pressure force
@ viscous force

@ Classical mechanics for particles = hydrodynamics
@ density estimate
@ equations of motion

© Numerical errors

@ Research challenges

@ A short excursion to other particle methods
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Outline

@ Background
@ hydrodynamic equations

Conservation law of momentum: Euler equations

Conservation law of mass: continuity equation

Total mass flows out of the volume V (per unit time) by surface integral

]{pv-df, (1)

where p density, v velocity and df is along the outward normal.
The decrease of the mass in the volume (per unit time)

—% /pdV. (2)

For a mass conservation, we have an equality

_%/pdV:%pv-df:/V'(pV)d\A (3)

which is valid for an arbitrary V. The continuity equation reads

dp

ot + V.- (pv) =0. (4)

Conservation law of momentum: Navier-Stokes equations

Total pressure force acting on the volume (surface to volume integral)

—j[pdf = —/VpdV. (5)

For a unit of volume, momentum equations in Lagrangian form read

dv dv Vp
— =-V —_—=—— 6
o poor — P (6)
Considering the particle derivative is related to the partial derivatives as
d 0
= - = AV 7
gt ot VY (7)
the Euler equations in Eulerian form read
ov Vp
- Vv =——-, 8
5 TV WV P (8)
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For real fluids, we need to add in viscous stress due to irreversible process
and assume that the viscous stress depends only /inearly on derivatives of

velocity.

Without derivation, the Navier-Stokes equations read
ov 1
a+v-Vv:—;[Vp+77Av+(C+n/3)VV-v] (9)

For an incompressible fluid p = const. and V -v =0.
Therefore, the momentum equations simplify to

ov

1
a+v-Vv=—;(Vp+nAv). (10)
For a compressible fluid, an equation of state is called for
p=p(p, T = To). (11)



Outline Mesh-based discretizations

@ Background

@ numerical methods

Prof. Karniadakis will cover the mesh-based methods in other lectures
o finite difference method

@ spectral h/p element method
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Mesh-free discretizations: mesh-free = mess-free? Outline

@ Some particle methods
e smoothed particle hydrodynamics (SPH)
e moving least square methods (MLS)
e vortex method
e Voronoi tesselation

© Mathematics of smoothed particle hydrodynamics

@ mesh-free &~ mess-free
e no mesh generation
e Lagrangian, nov-Vv
e complex moving boundary
e incorporation of new physics
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Outline Integral representation of a function

@ It was invented in 1970s (author?) [12, 8].

Given a scalar function f(r) of spatial coordinate r, its integral
© Mathematics of smoothed particle hydrodynamics representation reads
@ some facts and basic mathematics

f(r)= / f(r')o(r —r')dr, (12)

where the Dirac delta function reads
0o, r=r
w-n{ o T (13)

and the constraint of normalization is

/OO o(r)dr =1. (14)

oo
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Outline SPH 1%t step: smoothing or kernel approximation

(author?) [8]; (author?) [12]

Replace § with another smoothly weighting function w:

© Mathematics of smoothed particle hydrodynamics

F(r) ~ fi(r) = / F(FYw(r — ¥, hydr, (15)

@ kernel and particle approximations of a function where kernel w has properties

© smoothness

© compact with h as parameter

@ limpow(r—r',h)=6(r—1r')

Q [w(r—r, h)ydr=1

© symmetric

...... e 1 —r?/a?

o Gaussian: 278
compact: B-splines, Wendland functions ...
(author?) [15, 16, 19]
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Compact kernel and its normalization step: summation or particle approximation

@ a cubic function as reads (h =1 for simplicity) Integral <= summation
Cp(1—r)3 r<1;
w(r) = { 0, r>1 (1) () = / F()w(r — ', h)dr(19)
If we require the constraint of normalization in two dimension Nieigh
o 0 f(r) = Z fiw(r — ri, h) Vi, (20)
/ / C(1—r)rdrdd =1 <= G = — (17)
o Jo T
i . Lo . where V; is a distance, area and volume
@ a piecewise quintic function reads in 1D, 2D, and 3D, respectively
(3-5)P°—-6(2—5)°+15(1—-5s)° 0<s<1 Therefore,
B (3—5)°—6(2—5s)°, 1<s<?2
w(r) = Cp (3 - s)5, 2<s<3 (18) f(r) = fs(r) (21)  summation within compact support
0, s >3,

o fi(r) = f(r) + error(Ar, h
where s = 3r/h and C2 = 7/(47871’[72) and C3 — 1/(1207'('/73) k(r) s(r) rr I’( r )

o f(r) = fi(r) + error(h)
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An example: evaluation of density and arbitrary function Outline

Vi of particle index, mass m;, density p;, and V; = m;/p;.
Nneigh Nneigh

L) =3 fw(r—rnVi=Y Zfw(r—rh.  (22)

i PP © Mathematics of smoothed particle hydrodynamics

o What is the density at an arbitrary p05|t|on r?
Nneigh nelgh

ps(r) = Z p_’o' —rih Z miw(r — ri, h). (23) e first and second derivatives
i

@ What is the density of a particle at r;?

N neigh

ps()) = D miw(rj — ri, h). (24)

i

@ What is the value of a function of a particle at r;?
nelgh nelgh

Z fm' w(rj —ri,h Z iW;=1f (25)
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Gradient of a function Other first derivatives

f(r) =~ fi(r) = / f(r'yw(r—r',h)dr (26)
N8
V., f(r) =V, f(r) = V,/ F(r'yw(r—r', h)dr (27) Nocigh
' V. f(r)=V, fi(r) =V, fi(r) = Z p—i'f(r’) V,w(r—r',h) (31)
V. fi(r) = /Vrf(r')w(r —r' h)dr' + / f(r'YVew(r—r',h)dr' (28)
Nhreigh
U V,xf(r)=V,xf(r)~V,xf(r)= M V.w(r—r',h) (32
. /f(r/)vrw(r_ S e o) x f(r) W(r) =V, x £(r) Z o)XV owl ) (32)
N8
Nieigh .
V. f(r) = V,fi(r) = V. fi(r) = Z p—i'f(r’)V,W(r — ', h) (30)

Second derivatives Outline

Note that we have following identity (author?) [4]

[ a5ty e 2 Loy [ e

or rij (r —r)2
= VOVPF(r) + O(V*?). (33)
Therefore, ) )
© Particles for hydrodynamics
Nneih
1 T m; Ow;
FE = 2% a
Nneih
1 T m; Ow;
;(VV‘V) = - p_;_a—rj(5eij“’ueij—"ﬁ) (35)
i )
J

(36)
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Outline Particles for hydrodynamics

@ continuity equation is accounted for by

N, eigh

Z miWij, i =v; (37)

e pressure force: —Vp/p

© Particles for hydrodynamics Nneigh Nneigh N\ 5
- P w
@ continuity and pressure force Z F = Z m; ? ﬁeij» (38)
j J v
e bad: not antisymmetric by swapping i and j
e recognize —Vp/p = ——Vp V"
pi 3W
FS=-—mi | 5+ 39
/ ’ (P,z ) 8“1 (39)
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Outline viscous force
In general
mj Ow 5n
FP=—" Vi + | 5¢+ — ) ej - vijej 40
Y pipjri 8ru [( C) Y ‘ 3 s (40)
For inompression flows V - v = 0, therefore,
© Particles for hydrodynamics
N5 ow 1 Owy
1 1
) Z Ve - vjej ~ Z "y (41)
@ viscous force — PipiTj T pipjri Orj "
mj wij
FP =2n—2 “Dy; ~ 10 —e;-vjey. (42)

PiPjTij aru p,pjru drjj
Either choice is fine, but they are different.
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Summary of SPH for isothermal Navier-Stokes equations Outline

@ continuity equation:

neigh
pi = Z mWi, i =v; (43)
@ momentum equations: (authir?) [4, 11]
Nneigh
v o= Y (F,-JC-+F,-JD->, (44)
JF#
Fi = —mj B+h a_w% (45)
Pi Pj arj
m; Ow [[5n 51 @ Classical mechanics for particles = hydrodynamics
F,? = [(——C) vii + (564—-) e,-j-v,-je,-j} (46)
p,-pjr,-j (9!’,'j 3 3
@ weakly compressible: (author?) 12, 13]
2 p K
p=crp, or p=po K—) - 1} (47)
Pr
po relates to an artificial sound speed ct
30/50
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Outline Density estimate or sampling

Given a set of point particles with mass mj;, what is the density estimate
for a position at r.

Nheigh
ps(r) =D miw(r—r;, h). (48)
1
where kernel w has properties
@ smoothness
© compact with h as parameter
Q [w(r—r h)dr=1

@ Classical mechanics for particles = hydrodynamics Q symmetric

@ density estimate
Eq. (48) is more fundamental than the summation form presented early

N, neigh

fi(r) = Z fi%w(r — 11, h). (49)
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Outline Least action

Define the Lagrangian L as
L=T-U, (50)

where T and U are kinetic and potential energies, respectively. For a set

of particles
N

L=>"m; <; v; +u,(p,,s)) (51)

i

Define the action as

S :/Ldt. 52
@ Classical mechanics for particles = hydrodynamics (52)

Minimizing S such that §S = f(SLdt = 0, where § is a variation with
respect to particle coordinate or. We have (author?) [17]

5S = /(- (5v—|—— 5r):0 (53)

@ equations of motion

33/50
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Euler-Lagrangian equations Equation of motions for particles
From the Lagrangian L = va mj (%v,2 + u,-) we know
65 / <_ 5\’ + - (5!’) - 0 (54) 8L 6L Nneigh 8UJ apj
8_ = mjv;, 6_ = — Z mja—a— (57)
consider ov = d(or)/dt and d/dt = 8/81“ +v-V Vi vi j Pj OFj
I Some basic thermodynamics: dU = TdS — PdV
Since V = m/p, so dV = —mdp/p?. For per unit mass we have
oL oL oL f p
0S = /{{ ( ) +§} -5I’} dt + {E-(sr}m—o (55) du = TdS—?dp. (58)

assume variation vanishes at start and end times and furthermore, dr is

For a reversible process ds = 0, therefore du;/0p; = p/p?. Put everything
arbitrary. Therefore, we have the Euler-Lagrangian equations

known into the Euler-Lagrangian equations, we get

d [oL\ oL Nreigh

- ——=0. 56 ,

dt (8v,~) or; (56) vi=Y -m <%+ )g:v ) (59)
— ps i
JF#i !
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Conservation laws Outline

Euler hydrodynamics
@ total mass M = Z,N mj.

@ total linear momentum
N N
d dv, p, pJ ow
— miv; = = m;m; —ej; =
dt Z ! Z ZZ i D !
1 1

@ total angular momentum

N N
pi P\ Ow
- Z Z —mimj <_2 * _é> 8_rU (i x ) =0. (62) © Numerical errors

Similarly for the viscous forces.
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Errors in density estimate: kernel error Errors for a function f: kernel error and summation error

Similarly as for density estimate:
Recall the kernel approximation

f(r) = fi(r) + O(h?). (66)
pi(r) = /P("/)W(l’ — v/, h)dr’, (63) Recall the particle approximation of summation form
neigh
m:
Expanding p(r') by Taylor series around r fe(ri) = fs(ri) = Z p—{ﬁw(r,- —rj, h). (67)
d

J
Let us do Taylor series on f(r;) around | i
o) = p(r) / w(r — v, hdr' + Vp(r) - / (v — w(r— ', hdY’ Mhegh Nl
(ri) = f; Z —W (rj, h) + V£ - Z rj, w(r;, h) + O(h?).  (68)
+V2VPp(r) / rsPw(r — v hYdr' + O(h3). (64)

To have error of O(h?), we need

N
1w (rij) =1, rJ,—w rij) =0, 69
p(r) = pi(r) + O(h%). (65) EJ: pi ) Z ) (69)

which is not guranteed in practice (depends on configurations, Ax, and h).
39/50 40 /50

Recall [ w(r—+',h)dr =1 and odd terms vanish due to symmetric w,



Outline Challenges

@ error analysis due to particle configurations
@ consistency and conservation at the same time
@ convergence for a practical purpose

@ coarse-graining from molecular dynamics

@ Research challenges
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Outline Algorithmic similarity: pairwise forces within short range r,

@ in a nutshell, V particle i in SPH, SDPD, DPD, or MD, the EoM:

W= (F§ +FP+F)) (70)
j#i

@ options for different components

e weighting kernel or potential gradient in MD
e equation of state

e density field

e thermal fluctuations

e canonical ensemble / NVT: thermostat

SPH: (author?) [14]
SDPD: (author?) [4]
DPD: (author?) [10]; (author?) [5]; (author?) [9]

e A short excursion to other particle methods MD: (author?) [1]; (author?) [7]; (author?) [6]; (author?) [18]
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academic toy: several interesting elements

academic toy: several interesting elements

@ ~ 12,000 SDPD particles (author?) [3]
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@ ~ 12,000 SDPD particles (author?) [3]
@ hypnotized?
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