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a b s t r a c t

We present several time integration algorithms of second-order accuracy that are numer-
ically simple and effective for nonlinear elastodynamic problems. These algorithms are
based on a general four-step scheme that has a resemblance to the backward differentia-
tion formulas. We also present an extension to the composite strategy of the Bathe method.
Appropriate values for the algorithmic parameters are determined based on considerations
of stability and dissipativity, and less dissipative members of each algorithm have been
identified. We demonstrate the convergence characteristics of the proposed algorithms
with a nonlinear dynamic problem having analytic solutions, and test these algorithms
with several three-dimensional nonlinear elastodynamic problems involving large defor-
mations and rotations, employing St. Venant-Kirchhoff and compressible Neo-Hookean
hyperelastic material models. These tests show that stable computations are obtained with
the proposed algorithms in nonlinear situations where the trapezoidal rule encounters a
well-known instability.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The failure of popular algorithms in nonlinear dynamic analysis, e.g. the loss of unconditional stability of the trapezoidal
rule in the nonlinear regime [32,40,26,1], has motivated much of recent work in the development of more robust time inte-
gration algorithms for nonlinear elastodynamics. As pointed out in [25], numerical stability is of primary importance when
developing such schemes. In this regard, energy-conserving algorithms (e.g. [22,36,26,23,17,8,34,29,33]) that target nonlin-
ear problems have been proposed by a number of researchers. Among them the energy-momentum type methods pioneered
by Simo and Tarnow [36], with improvements and extensions by many subsequent efforts (see e.g. [37,26,25,17,28], among
others), have been especially successful. However, energy-conserving schemes have shown difficulties for numerically stiff
problems due to their lack of dissipation in the high-frequency range. Failures of energy-conserving algorithms have been
reported in [31,6,26,27,2], among others. It has been realized that the numerical instabilities associated with the existence
of repeated unit root at infinite frequency in common conserving schemes result in highly oscillatory responses, which hin-
der the convergence process for the solution of nonlinear equations [2]. Reducing the time step size may not necessarily help
the convergence process as a smaller time step may allow the excitation of even higher frequencies [5]. As a result, the need
for numerical dissipation in the high-frequency range, even though the underlying system may exhibit full energy conser-
vation, has been commonly recognized for robust time integration algorithms in the nonlinear regime.

Classical dissipative schemes [30,38,20,39,9] have been developed in the context of linear elastodynamics, see [21] for a
more comprehensive description. Although they have also been applied to nonlinear problems, it is observed that these algo-
rithms fail to provide reliable high-frequency dissipation in the nonlinear regime [25,2]. Indeed, the value of the algorithmic
parameter at which the scheme is dissipative may become problem dependent, see [19] for such an example in the nonlinear
. All rights reserved.
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regime with the HHT-a scheme [20]. Much of recent research work [26,25,7,2,5,19] aiming to provide reliable numerical dis-
sipation in the nonlinear regime has been motivated by the ineffectiveness of classical dissipative schemes for nonlinear
problems. Most of the recently proposed algorithms are constructed based on some energy-conserving scheme, or other ap-
proaches such as the time discontinuous Galerkin method.

Another interesting approach has recently been proposed by Bathe and collaborators [3,4]. The main idea is to combine
the trapezoidal rule and the second-order backward Euler method into a composite algorithm. High-frequency numerical
dissipation is introduced through the backward Euler component. The algorithm has been demonstrated to be effective
for nonlinear elastodynamic problems involving large deformations, where the trapezoidal rule fails to produce a stable solu-
tion. The simplicity of this approach is particularly noteworthy, together with the symmetry of the resultant tangential stiff-
ness matrix, which is to be contrasted with the non-symmetry of the tangent matrices resulting from, for example, the
energy-momentum based methods.

In this paper we propose a general four-step scheme that bears a resemblance to the backward differentiation formulas
(BDF) [16], and present two time integration algorithms based on this scheme. We also consider a composite algorithm
incorporating such a BDF-like scheme and the trapezoidal rule using a composite strategy similar to the Bathe method
[3], and also present an extension of the Bathe composite strategy. These algorithms each involve two algorithmic param-
eters. The domains of the appropriate parameter values are determined based on a linear stability analysis and the consid-
eration of dissipativity. Although a nonlinear stability analysis of these algorithms for general nonlinear elastodynamic
problems is still elusive, numerical experiments suggest that these algorithms are very effective for nonlinear dynamic prob-
lems at time step sizes where the trapezoidal rule encounters a well-known instability. We test these algorithms for several
three-dimensional (3D) nonlinear elastodynamic problems involving large deformations with St. Venant-Kirchhoff and com-
pressible Neo-Hookean material models. The convergence characteristics of these algorithms are demonstrated using a non-
linear problem having analytic solutions.

The rest of this paper is organized as follows. In Section 2 we briefly discuss the high-order spatial discretization scheme
of the nonlinear elastodynamic equation with the spectral element method, which has been documented in detail elsewhere
[15]. The proposed temporal algorithms will be implemented and tested in conjunction with this approach for spatial dis-
cretization. In Section 3 we present a general four-step BDF-like scheme with second-order accuracy, and several algorithms
based on this scheme. In Section 4 we demonstrate the temporal convergence characteristics of these algorithms with a non-
linear problem having analytic solutions. In Section 5 we test the proposed algorithms with several nonlinear elastodynamic
problems involving large deformations for St. Venant-Kirchhoff and Neo-Hookean hyperelastic materials, and compare them
with the trapezoidal rule, the Bathe method, and the Park method [32]. Finally, Section 6 provides some concluding remarks.

2. Problem formulation

Consider the finite deformation of a 3D object occupying domain X with boundary @X ¼ @XD [ @XN , where Dirichlet
boundary conditions (BC) are provided on @XD and Neumann-type (traction) BCs on @XN . Assume that the object is in its
natural configuration (no deformation), X0, at time t = 0, and deforms to a new configuration, XðtÞ, at time t. With respect
to the initial configuration X0, the weak form of the momentum equation can be expressed as follows,
Z

X0

S :
1
2

@v
@X

� �T

� FðuÞ þ FTðuÞ � @v
@X

 !
dX0 �

Z
@X0N

T � vdC�
Z

X0

q0f � vdX0 þ
Z

X0

q0
@2u
@t2 � vdX0 ¼ 0 8v 2 V0; ð1Þ
where X is the coordinate in X0;uðX; tÞ is the displacement, and V0 ¼ fwðXÞ 2 ½H1ðX0Þ�3jwðXÞ ¼ 0 on @X0Dg. In the above
equation, S, F(u), f and q0 are, respectively the second Piola–Kirchhoff stress tensor, deformation gradient tensor, external
body force, and the structural mass density in the initial configuration. The external traction force T is assumed to be defor-
mation-independent, i.e. non-follower load. The superscript in ð�ÞT denotes transposition.

We consider two hyperelastic material models in this paper. The first model is the St. Venant-Kirchhoff constitutive law,
which is characterized by the following strain energy density function
W ¼ k
2
ðtrEÞ2 þ lE : E; ð2Þ
where E is the Green-Lagrange strain tensor; k and l are material constants, related to the Young’s modulus E and Poisson
ratio m by
k ¼ mE
ð1þ mÞð1� 2mÞ ; l ¼ E

2ð1þ mÞ : ð3Þ
We will also consider a compressible Neo-Hookean material, characterized by the following strain energy density
function
W ¼ l
2
ðIC � 3Þ � l log J þ k

2
ðlog JÞ2; ð4Þ
where C is the right Cauchy-Green deformation tensor, J is the Jacobian ðJ2 ¼ det CÞ; IC ¼ trC, and l and k are material
constants.
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In the numerical examples presented in Section 5 we will extensively investigate the characteristics of the total energy,
defined by
H ¼
Z

X0

1
2
q0

@u
@t

� �2

dX0 þ
Z

X0

WdX0 ð5Þ
and the angular momentum, defined by
J ¼
Z

X0

q0ðXþ uÞ � @u
@t

dX0: ð6Þ
We employ a high-order spectral element approach (see [15] for details) to discretize Eq. (1) spatially. The essential com-
ponent of this approach is a set of high-order shape functions based on Jacobi polynomials for unstructured elements, which
provides a unified treatment for all commonly encountered element types in 3D space (hexahedron, tetrahedron, prism, pyr-
amid). These shape functions were originated from computational fluid dynamics [35,24], and have been employed to solve
Navier–Stokes equations and turbulence problems [12,13,11,10,14]. New schemes for temporal discretization will be pro-
posed and discussed below in Section 3. The spatial and temporal discretization processes result in a set of nonlinear alge-
braic equations, which will be solved with a Newton–Raphson iterative procedure [15].

3. Time integration algorithms

After spatial discretization of Eq. (1), we obtain a semi-discretized equation,
M€Uþ NðU; tÞ � RðtÞ ¼ 0; ð7Þ
where overdot denotes the time derivative; M and U are, respectively the mass matrix and the vector of expansion coeffi-
cients of the displacement; N represents the contribution of the internal stresses, and is nonlinear with respect to the dis-
placement; R represents the contribution of the external loads. Note that R does not depend on U under the assumption of
non-follower loads we made in Section 2. This equation is supplemented with appropriate initial conditions. We will enforce
Eq. (7) at time step (n + 1), i.e.
M€Unþ1 þ Nnþ1 � Rnþ1 ¼ 0; ð8Þ
where n is the time step index.
In this section we propose a general four-step BDF-like scheme, and several temporal algorithms based on this scheme for

solving Eq. (7). Each algorithm involves two parameters, and we determine the appropriate values of these parameters based
on a linear stability analysis. So the term stability used in this section is confined to the linear sense.

3.1. A BDF-like scheme of second-order accuracy

We propose the following general four-step linear multistep scheme, in the spirit of backward differentiation formulas,
for solving the semi-discretized equation,
a1ynþ1 þ a2yn þ 7
2
� 6a1 � 3a2

� �
yn�1 þ ð8a1 þ 3a2 � 6Þyn�2 þ 5

2
� 3a1 � a2

� �
yn�3 ¼ _ynþ1Dt; ð9Þ
where y is a generic variable.
The algorithmic parameters a1 and a2 are real numbers ða1 – 0Þ. The time step size Dt is assumed to be constant. One can

demonstrate that this scheme has a temporal second-order accuracy for all ða1;a2Þ values by employing the order condition
for linear multistep schemes [18]. Requiring the scheme to be stable as Dt ! 0 (i.e. zero-stability) leads to the following con-
ditions on the parameters
a2 6 �2a1 þ 3
2

a2 > � 18
5 a1 þ 5

2 :

(
ð10Þ
3.1.1. Restriction to a three-step scheme
We first restrict this scheme to a three-step type (with a2 ¼ 5

2� 3a1),
a1ynþ1 þ 5
2
� 3a1

� �
yn þ ð3a1 � 4Þyn�1 þ 3

2
� a1

� �
yn�2 ¼ _ynþ1Dt; ð11Þ
and accordingly with the zero-stability condition a1 P 1. It is straightforward to check that a1 ¼ 3=2 corresponds to the sec-
ond-order BDF (BDF2) and a1 ¼ 11=6 corresponds to the third-order BDF (BDF3). To facilitate subsequent discussions we re-
parametrize the above scheme with the transform a1 ¼ 11

6 � h
3, and Eq. (11) becomes
AðhÞynþ1 þ BðhÞyn þ CðhÞyn�1 þ DðhÞyn�2 ¼ _ynþ1Dt; ð12Þ
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where
Fig. 1.
of the a
xDt inc
AðhÞ ¼ 11
6 � h

3 ;

BðhÞ ¼ h� 3;
CðhÞ ¼ 3

2� h;

DðhÞ ¼ � 1
3þ h

3 :

8>>><
>>>:

ð13Þ
The zero-stability condition for the re-parametrized scheme is given by h 6 5
2.

In the first algorithm we employ the scheme represented by Eq. (12), but discretize the velocity and acceleration in a dif-
ferent yet complementary fashion as follows:
_Unþ1 ¼ Aðh1Þ
Dt

Unþ1 þ Bðh1Þ
Dt

Un þ Cðh1Þ
Dt

Un�1 þ Dðh1Þ
Dt

Un�2 ð14Þ

€Unþ1 ¼ Aðh2Þ
Dt

_Unþ1 þ Bðh2Þ
Dt

_Un þ Cðh2Þ
Dt

_Un�1 þ Dðh2Þ
Dt

_Un�2 ð15Þ
where the algorithmic parameters h1 and h2 in general may take different values, with h1; h2 6
5
2 according to the zero-sta-

bility condition. We will refer to this method as the GBDF-A algorithm in subsequent discussions.
We aim to seek ðh1; h2Þ values such that the algorithm represented by Eqs. (14) and (15) is linearly unconditionally stable

and with relatively low dissipativity. For this purpose we first consider the scalar free-oscillation equation with no damping:
€uþx2u ¼ 0 ð16Þ
with initial conditions uð0Þ ¼ 1 and _uð0Þ ¼ 0, where u is the scalar variable to be solved and x > 0 is the angular frequency of
oscillation. We discretize Eq. (16) employing the scheme represented by Eqs. (14) and (15), and obtain the iterative relation:
½unþ1 un un�1 _unþ1 _un _un�1�T ¼ G½un un�1 un�2 _un _un�1 _un�2�T ; ð17Þ
where G is the amplification matrix and its specific form is provided in Appendix A.
The eigenvalues kiði ¼ 1; . . . ;6Þ, and the spectral radius qG, of the amplification matrix are functions of h1 and h2, and de-

pend on x and Dt only through the term xDt. In Fig. 1(a) we plot contours in the h1–h2 plane of the maximum spectral ra-
dius, qmaxðh1; h2Þ ¼max06xDt<1qGðh1; h2;xDtÞ. In the shaded region of this plot, the maximum spectral radius has a unit value
for any time step size 0 6 Dt

T <1, where T is the period of oscillation, T ¼ 2p=x. This region is bounded by the lines h1 ¼ 5=2
and h2 ¼ 5=2 on the right and top sides, and by the line h1 þ h2 ¼ 1ð�0:2 K h1 K 1:2;�0:2 K h2 K 1:2Þ; in the middle portion
of the left-bottom side.

We next investigate the distribution of all the eigenvalues of the amplification matrix in the complex plane for ðh1; h2Þ
values residing in this shaded region. Fig. 1(b) shows the distribution of the six eigenvalues in the complex plane correspond-
ing to ðh1; h2Þ ¼ ð1;0Þ, as xDt increases from zero to1 (The largest xDt value computed in the figure is 2000p). The arrows
GBDF-A algorithm (damping-free equation): (a) contours of maximum spectral radius (for 0 6 Dt
T <1) in h1–h2 plane; (b) distribution of eigenvalues

mplification matrix in the complex plane for 0 6 xDt <1 with ðh1; h2Þ ¼ ð1; 0Þ. The arrows near the curves indicate how the eigenvalues evolve as
reases. The test problem is the free vibration of a spring (no damping). T is the period of vibration, T ¼ 2p

x .



t/T

T
ot

al
en

er
gy

0 50 100 150 200
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Δt/T=0.01
Δt/T=0.05
Δt/T=0.1
Δt/T=0.15

0.01

0.08

0.15

θ1

θ 2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
(a) (b)

Fig. 2. Dissipativity of GBDF-A algorithm: (a) history of the total energy for linear vibration equation computed with ðh1; h2Þ ¼ ð1=2;1=2Þ and different time
step sizes and (b) contours of fraction of energy loss per period, at a fixed Dt

T ¼ 0:05, in h1 � h2 plane.
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near each curve indicate how the eigenvalues evolve with increasing xDt. The dashed line marks the unit circle in the plane.
On can observe that all eigenvalues approach zero at large xDt values. A pair of complex eigenvalues (k1 and k5 in Fig. 1(b),
conjugate to each other) originate from the point (1,0), which corresponds to xDt ¼ 0. They have the largest norm among the
six eigenvalues as xDt is small. Another conjugate pair of complex eigenvalues (k2 and k4) originate from inside the unit cir-
cle. The two remaining eigenvalues are real, and k6 is identically zero. The key observation here is that for any xDt > 0 all
eigenvalues have a norm not larger than the unit value, and that there is no repeated eigenvalue (i.e. multiplicity more than
one) with a unit norm. For other h1; h2 values in the shaded region, the shapes of the eigenvalue curves in the complex plane
differ from those of Fig. 1(b) to a certain degree. For example, three pairs of complex eigenvalues result from some h1; h2 val-
ues. However, the observation that no eigenvalue is repeated with a unit norm for xDt > 0 is always true. This indicates that
the GBDF-A algorithm with parameters h1; h2 located in the shaded region of Fig. 1(a) is linearly unconditionally stable.

We next investigate the effect of ðh1; h2Þ values on the dissipativity of the GBDF-A algorithm. The total energy of the linear
vibration, defined by Et ¼ 1

2 x2u2 þ 1
2

_u2, decays over time as a function, Et ¼ E0e�ct=T , where E0 is the initial energy and the
constant c depends on h1; h2 and Dt=T , as is shown by the total energy histories in Fig. 2(a). We therefore employ the fraction

of energy loss per period, E0�Et jt¼T
E0

¼ 1� e�c, as a measure of the dissipativity of the algorithm. In Fig. 2(b) we plot contours of

the fraction of energy loss per period, 1� e�c, for a fixed Dt=T ¼ 0:05, over the region of unconditional stability in the h1 and
h2 plane. It shows that as ðh1; h2Þ moves away from the left-bottom boundary toward the top-right of the domain of uncon-
ditional stability, the algorithm becomes more dissipative. The parameter values on the line h1 þ h2 ¼ 1 are therefore among
the least dissipative of this class of schemes, and are preferred in terms of dissipativity. Note that for the GBDF-A scheme
with h1 þ h2 ¼ 1ð�0:2 K h1; h2 K 1:2Þ the velocity and the acceleration are discretized in a different but complementary fash-
ion (see Eqs. (14) and (15)). In particular, with ðh1; h2Þ ¼ ð1;0Þ the velocity is discretized with BDF2 while the acceleration is
discretized with BDF3; With ðh1; h2Þ ¼ ð0;1Þ the velocity is discretized with BDF3 while the acceleration is discretized with
BDF2. Note that BDF3 itself is not unconditionally stable. But when BDF3 and BDF2 are combined in the above fashion the
overall algorithm is unconditionally stable due to their interactions. The GBDF-A scheme with h1; h2 ¼ ð1=2;1=2Þ corresponds
to the Park method [32].

The GBDF-A algorithm with parameters ðh1; h2Þ residing in the domain of unconditional stability is also stable in the pres-
ence of physical damping. To demonstrate this point we consider the damped linear vibration equation
€uþ 2nx _uþx2u ¼ 0; ð18Þ
where n is the damping coefficient. Applying the GBDF-A scheme to this equation, we can similarly form the amplification
matrix. Fig. 3 shows typical spectral radii plots and the eigenvalue distributions in the complex plane for the damped vibra-
tion equation, which are computed with ðh1; h2Þ ¼ ð1;0Þ. Fig. 3(a) is a plot of the spectral radii of the amplification matrix as a
function of the time step size for several damping coefficient values, ranging from no damping, to critical damping and over-
damping situations. It shows that the spectral radius is no larger than the unit value for any Dt=T . Examination of the eigen-
value distribution in the complex plane for different n values further indicates that no eigenvalue is repeated with a unit
norm for any Dt=T > 0. This is demonstrated in Fig. 3(b) by the eigenvalue distribution as Dt=T !1 for a fixed damping
coefficient n ¼ 0:1. A comparison between Fig. 3(b) and 1(b) (no damping) indicates that the presence of physical damping
has moved the largest eigenvalues (k1 and k5) inward toward the origin, making the computation more stable. With a larger



Fig. 3. GBDF-A algorithm (damped vibration equation): (a) spectral radii of the amplification matrix versus time step size Dt=T for various damping
coefficients n, (b) eigenvalue distribution in complex plane as Dt=T !1 for a fixed n ¼ 0:1, (c) spectral radii versus n for various Dt=T and (d) eigenvalue
distribution in complex plane as n!1 for a fixed Dt=T ¼ 0:1. All results correspond to ðh1; h2Þ ¼ ð1:0; 0:0Þ.
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damping coefficient n, the distribution moves further toward the origin. It is evident that the amplification matrix has no
repeated eigenvalue with a unit norm for any Dt=T – 0. Fig. 3(c) shows the spectral radii as a function of the damping coef-
ficient n for several fixed time step sizes Dt=T , and Fig. 3(d) shows the eigenvalue distribution in the complex plane as n!1
with a fixed Dt=T ¼ 0:1. The arrows near each curve in Fig. 3(d) indicate how the eigenvalues evolve with the increase of n.
Most notably, the pair of complex eigenvalues with the largest norm (k1 and k5) evolve into two distinct real eigenvalues at
large n values. While k1 moves toward the origin, k5 approaches the unit value as n!1. The amplification matrix has no
repeated eigenvalue with a unit norm for any n P 0. The above observations also apply to other ðh1; h2Þvalues in the shaded
region of Fig. 1(a). These results demonstrate the unconditional stability of the GBDF-A scheme in the presence of physical
damping.

We herein propose to employ the GBDF-A algorithm represented by Eqs. (14) and (15) to solve the semi-discretized non-
linear elastodynamic Eq. (8), with the requirement that the algorithmic parameters ðh1; h2Þ should reside in the region of
unconditional stability. Eliminating _Unþ1 from Eqs. (14) and (15), and substituting the resulting expression for €Unþ1 into
Eq. (8) will lead to a nonlinear algebraic equation about Unþ1, which can be solved with a Newton-type method. Subse-
quently _Unþ1 and €Unþ1 can be obtained by using Eqs. (14) and (15). The performance of the GBDF-A algorithm for nonlinear
dynamic problems will be demonstrated in Section 5 with numerical examples.
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3.1.2. General four-step scheme
Let us now consider the general four-step scheme of Eq. (9) for the semi-discretized elastodynamic equation. We re-para-

metrize the scheme with the following transform,
a1 ¼ � 1
3 h1h2 � 1

4 h2 þ 25
12

a2 ¼ h1h2 þ h2 � 4:

(
ð19Þ
Accordingly, Eq. (9) is transformed to
A1ðh1; h2Þynþ1 þ A2ðh1; h2Þyn þ A3ðh1; h2Þyn�1 þ A4ðh1; h2Þyn�2 þ A5ðh1; h2Þyn�3 ¼ _ynþ1Dt; ð20Þ
where
A1ðh1; h2Þ ¼ � 1
3 h1h2 � 1

4 h2 þ 25
12 ;

A2ðh1; h2Þ ¼ h1h2 þ h2 � 4;
A3ðh1; h2Þ ¼ �h1h2 � 3

2 h2 þ 3;
A4ðh1; h2Þ ¼ 1

3 h1h2 þ h2 � 4
3 ;

A5ðh1; h2Þ ¼ 1
4� 1

4 h2:

8>>>>>><
>>>>>>:

ð21Þ
The zero-stability condition is transformed to the following relation
ðh1 þ 3
2Þh2 6 4

ðh1 � 1
2Þh2 < 5:

(
ð22Þ
For temporal discretization of the semi-discretized elastodynamic equation we employ the above scheme as follows,
_Unþ1 ¼ A1ðh1 ;h2Þ
Dt Unþ1 þ A2ðh1 ;h2Þ

Dt Un þ A3ðh1 ;h2Þ
Dt Un�1 þ A4ðh1 ;h2Þ

Dt Un�2 þ A5ðh1 ;h2Þ
Dt Un�3

€Unþ1 ¼ A1ðh1 ;h2Þ
Dt

_Unþ1 þ A2ðh1 ;h2Þ
Dt

_Un þ A3ðh1 ;h2Þ
Dt

_Un�1 þ A4ðh1 ;h2Þ
Dt

_Un�2 þ A5ðh1 ;h2Þ
Dt

_Un�3

(
ð23Þ
The algorithm represented by the above equation will be referred to as the GBDF-B scheme in subsequent discussions.
We are interested in the values of ðh1; h2Þ such that this algorithm (Eq. (23)) is linearly unconditionally stable. A spectral

analysis using the damping-free linear vibration Eq. (16) similar to the previous section results in the following iterative
relation:
unþ1 un un�1 un�2 _unþ1 _un _un�1 _un�2� �T ¼ G un un�1 un�2 un�3 _un _un�1 _un�2 _un�3� �T
: ð24Þ
The specific form of the amplification matrix G is provided in Appendix A.
Fig. 4(a) shows in the h1 � h2 plane contours of the maximum spectral radius qmaxðh1; h2Þ ¼max06Dt

T <1
qGðh1; h2;xDtÞ,

where T is the period of vibration, T ¼ 2p=x, and qGðh1; h2;xDtÞ is the spectral radius of the amplification matrix. Within
the shaded region in Fig. 4(a) qmax has an identical unit value.

For ðh1; h2Þ values from the shaded region, eigenvalue distribution indicates that the amplification matrix has no repeated
eigenvalue of a unit norm. This is shown in Fig. 4(b) by the distribution of the eight eigenvalues in the complex plane cor-
responding to ðh1; h2Þ ¼ ð1=2;4=5Þ, which belongs to this region. The matrix has four complex conjugate pairs of eigenvalues.
Among them the pair of k1 and k8 originates from the point (1,0) in the complex plane (which corresponds to xDt ¼ 0) and
has the largest norm as xDt is not large, while the other eigenvalues all originate from and are confined inside the unit circle.
One can observe that for any xDt > 0 the norms of all eigenvalues are no larger than one and that no eigenvalue is repeated
with a unit norm. This observation also applies to other ðh1; h2Þ values from the shaded region of Fig. 4(a). Therefore, the
shaded region corresponds to the domain of unconditional stability of the GBDF-B algorithm. Note that this domain is
non-compact in the h1 � h2 plane, and it is contained within the domain of zero-stability (Eq. (22)). The left boundary of this
domain lies on the line h1 ¼ 1

2 (with 4=5 6 h2 6 2). A study of the damped vibration Eq. (18) shows that the GBDF-B algorithm
with ðh1; h2Þ values located in this domain is also unconditionally stable in the presence of physical damping.

The dissipativity characteristics of the GBDF-B algorithm is demonstrated by Fig. 4(c), in which we plot contours of the
fraction of energy loss per period in the h1 � h2 plane, computed using a time step size Dt=T ¼ 0:02. A comparison of Fig. 4(a)
and (c) indicates that within the domain of unconditional stability the GBDF-B scheme tends to be less dissipative with
ðh1; h2Þ values falling on the left boundary, h1 ¼ 1=2.

Plots of the spectral radius qG as a function of Dt=T for several ðh1; h2Þ values lying on the left boundary of the domain of
unconditional stability have been shown in Fig. 5(a). In Fig. 5(b) we compare the fraction of energy loss per period as a func-
tion of Dt=T for the same pairs of ðh1; h2Þ values. It is evident that for fixed ðh1; h2Þ values the dissipativity of the GBDF-B
scheme increases with increasing time step size Dt=T. Furthermore it indicates that, along the left boundary h1 ¼ 1=2, the
dissipativity of the scheme decreases as h2 decreases for a fixed time step size. Therefore, the GBDF-B scheme with
ðh1; h2Þ ¼ ð1=2;4=5Þ is the least dissipative member of this family of unconditionally stable algorithms.

The GBDF-B algorithm will be employed to solve the semi-discretized nonlinear elastodynamic equation, with the
requirement that the algorithmic parameters ðh1; h2Þ be located within the domain of unconditional stability. The discreti-
zation leads to a system of nonlinear algebraic equations with Unþ1 as the unknown, which is solved with a Newton-type



Fig. 4. GBDF-B algorithm: (a) contours in h1 � h2 plane of the maximum spectral radius qmaxðh1; h2Þ with the linear vibration equation, (b) eigenvalue
distribution in the complex plane for 0 6 xDt <1 corresponding to ðh1; h2Þ ¼ ð1=2;4=5Þ and (c) contours of fraction of energy loss per period in h1 � h2

plane computed with a fixed time step size Dt=T ¼ 0:02. T is the period of vibration.
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iterative method. Afterwards Eq. (23) can be used to compute _Unþ1 and €Unþ1. In Section 5 we will present several nonlinear
numerical examples computed with this algorithm. Since the scheme requires historical information (step n� 3), some other
algorithm (e.g. trapezoidal rule) needs to be used to calculate the first steps to initiate the computation.

3.2. A composite method based on BDF-like schemes

We next present a composite time integration algorithm incorporating the BDF-like scheme of the previous section and
the trapezoidal rule using a strategy similar to [3]. We consider the time step from n to (n + 1) consists of two equal sub-
steps. In the first sub-step, from n to (n + 1/2) (i.e. from t to t þ Dt=2), the trapezoidal rule is employed to solve the semi-dis-
cretized elastodynamic equation; In the second sub-step, from (n + 1/2) to (n + 1) (or from t þ Dt=2 to t þ Dt), the BDF-like
algorithm of the previous section is employed for the computation.

More specifically, in the first sub-step we enforce the semi-discretized nonlinear elastodynamic Eq. (7) at time step
(n + 1/2),
M€Unþ1
2 þ Nnþ1

2 � Rnþ1
2 ¼ 0: ð25Þ



Fig. 5. GBDF-B algorithm: spectral radius (a) and fraction of energy loss per period (b) as a function of Dt=T with different ðh1; h2Þ parameters.
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The trapezoidal rule is then used to discretize the above equation,
Unþ1
2 ¼ Un þ Dt

4 ð _Un þ _Unþ1
2Þ

_Unþ1
2 ¼ _Un þ Dt

4 ð€Un þ €Unþ1
2Þ:

(
ð26Þ
After eliminating _Unþ1
2 from Eq. (26) and substituting €Unþ1

2 into Eq. (25), one obtains a nonlinear algebraic equation about
Unþ1

2, which can be solved with a Newton-type method.
For the second sub-step we employ a BDF-like scheme such as the GBDF-B scheme with a time step size Dt=2.
_Unþ1 ¼ A1ðh1 ;h2Þ
Dt=2 Unþ1 þ A2ðh1 ;h2Þ

Dt=2 Unþ1
2 þ A3ðh1 ;h2Þ

Dt=2 Un þ A4ðh1 ;h2Þ
Dt=2 Un�1

2 þ A5ðh1 ;h2Þ
Dt=2 Un�1

€Unþ1 ¼ A1ðh1 ;h2Þ
Dt=2

_Unþ1 þ A2ðh1 ;h2Þ
Dt=2

_Unþ1
2 þ A3ðh1 ;h2Þ

Dt=2
_Un þ A4ðh1 ;h2Þ

Dt=2
_Un�1

2 þ A5ðh1 ;h2Þ
Dt=2

_Un�1

8<
: ð27Þ
Eliminating _Unþ1 from Eq. (27) and substituting €Unþ1 into Eq. (8) result in a nonlinear algebraic equation about Unþ1, which
can be solved with a Newton method. The above composite scheme will be referred to as the GBDF-TR algorithm hereafter.

The zero-stability requirement for the GBDF-TR composite scheme yields the following conditions on the parameters
ðh1; h2Þ:
h1 þ
3
2

� �
h2 <

19
4
; h2 P �2 ð28Þ
or
h1 þ
3
2

� �
h2 >

19
4
; h2 6 �2: ð29Þ
In order to determine the range of ðh1; h2Þ values for the GBDF-TR scheme, we again employ the spectral analysis using Eq.
(16). Applying the GBDF-TR composite scheme to this equation leads to the following iterative relation:
½unþ1 unþ1
2 un _unþ1 _unþ1

2 _un €unþ1�T ¼ G½un un�1
2 un�1 _un _un�1

2 _un�1 €un�T ; ð30Þ
where G is the amplification matrix and its specific form is provided in Appendix A.
Fig. 6(a) shows contours of the maximum spectral radius, qmaxðh1; h2Þ ¼ max06Dt

T <1
qGðh1; h2;xDtÞ, in the h1 � h2 plane,

where qGðh1; h2;xDtÞ is the spectral radius of the amplification matrix.
Within the shaded region (which excludes the boundary curve on the top side) qmax has an identical unit value. A typical

distribution of eigenvalues of the amplification matrix in the complex plane for ðh1; h2Þ parameters from the shaded region is
shown in Fig. 6(b), which corresponds to ðh1; h2Þ ¼ ð7=9;9=10Þ. One can observe that the amplification matrix has no re-
peated eigenvalue with a unit norm for any xDt > 0. This observation also applies to other ðh1; h2Þ values from the shaded
region. The GBDF-TR algorithm is therefore linearly unconditionally stable for ðh1; h2Þ parameters located in the shaded re-
gion of Fig. 6(a). Note that the parameter values of ðh1; h2Þ within this region also satisfy the zero-stability condition (Eq.
(28)). We have also studied the GBDF-TR algorithm for the damped vibration Eq. (18) and confirmed its unconditional sta-
bility in the presence of physical damping with ðh1; h2Þ values located in the shaded region of Fig. 6(a).

Fig. 6(c) shows contours of the fraction of energy loss per period in the h1 � h2 plane, computed using a fixed time step
size Dt=T ¼ 0:02. It indicates that, within the domain of unconditional stability, the GBDF-TR schemes with ðh1; h2Þ values



Fig. 6. GBDF-TR algorithm: contours in h1 � h2 plane of (a) the maximum spectral radius qmaxðh1; h2Þ, and (c) the fraction of energy loss per period (with
Dt=T ¼ 0:02) and (b) distribution of eigenvalues of amplification matrix for 0 6 xDt <1 with ðh1; h2Þ ¼ ð7=9;9=10Þ.
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lying on the boundary curve on the left side are generally associated with low dissipativity. The spectral radii as a function of
Dt=T for several ðh1; h2Þ values lying on this boundary curve have been shown in Fig. 7(a). Fig. 7(b) shows the fraction of en-
ergy loss as a function of Dt=T for the same set of ðh1; h2Þ values. We observe that the GBDF-TR scheme becomes more dis-
sipative as the time step size Dt=T increases, similar to the BDF-like schemes, and that along the left boundary of the domain
of unconditional stability the scheme becomes more dissipative as h2 increases.

3.3. An extension of the Bathe composite strategy

In this section we present an algorithm that can be regarded as an extension of the Bathe composite strategy [3]. This
algorithm retains the self-starting nature and second-order temporal accuracy of the Bathe method, but improves upon
the dissipativity. We borrow the idea from [3] that a time step of size Dt is treated as two equal sub-steps of size Dt=2. In
the first sub-step, from n to (nþ 1=2) Eq. (7) is enforced at nþ 1=2 (Eq. (25)). The unknowns to solve are the displacement
Unþ1

2, velocity _Unþ1
2, and acceleration €Unþ1

2.
To solve this sub-step we employ a variant form of the Newmark-ðb; cÞ scheme with c ¼ 1=2, represented by the following

equations,



Fig. 7. GBDF-TR algorithm: spectral radius (a) and fraction of energy loss per period (b) as a function of Dt=T for different ðh1; h2Þ parameters.
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h2Unþ1
2 � h2Un ¼ h2

Dt
2

� �
_Un þ Dt

2

� �2
€Unþ1

2 þ h2

2
� 1

� �
Dt
2

� �2
€Un; ð31Þ

Unþ1
2 � Un ¼ Dt

4
_Unþ1

2 þ _Un
� �

; ð32Þ
where the algorithmic parameter h2ðh2 – 0Þ plays the role of 1=b, and h2 ¼ 4 corresponds to the trapezoidal rule. The above
formulas are second-order accurate for any non-zero value of h2, as is well-known. Note that if this scheme alone is em-
ployed to solve the linear elastodynamic equation, the condition 0 < h2 6 4 is required for stability.

In the second sub-step, from ðnþ 1=2Þ to ðnþ 1Þ, the semi-discretized Eq. (7) is enforced at time t þ Dt (Eq. (8)). The un-
knowns to solve are the displacement Unþ1, velocity _Unþ1, and acceleration €Unþ1 at step ðnþ 1Þ. We employ the following
scheme to solve this sub-step,
3� 3
2

h1

� �
Unþ1 � 6 1� h1ð ÞUnþ1

2 þ 3� 9
2

h1

� �
Un ¼ 2

Dt
2

� �
_Unþ1

2 þ 3h1 � 2ð Þ Dt
2

� �
_Un þ Dt

2

� �2
€Unþ1; ð33Þ

3
2

Unþ1 � 2Unþ1
2 þ 1

2
Un ¼ Dt

2
_Unþ1; ð34Þ
where h1 is an algorithmic parameter ðh1 – 2Þ, and Unþ1
2 and _Unþ1

2 are known from the first sub-step. It can be verified through
Taylor expansions that Eq. (33) represents a second-order accurate relation for any value of h1. Note that the above scheme
with h1 ¼ 1=2 is equivalent to, but has a different formulation than, the second-order backward Euler method applied to both
_Unþ1 and €Unþ1.

The algorithm represented by Eqs. (31)–(34) is a family of second-order composite schemes with h1 and
h2ðh1 – 2 and h2 – 0Þ as algorithmic parameters. We will subsequently refer to this algorithm as the SDMM-Newmark com-
posite scheme.

We next determine the range of the parameter values based on Eq. (16). Note that this composite scheme as a whole is
zero-stable (i.e. stable as Dt ! 0) for any ðh1; h2Þ value with h1 – 2 and h2 – 0, even though the individual algorithm of the
second sub-step represented by Eqs. (33) and (34) is only zero-stable under the condition 0 < h1 6 1.

Employing this scheme to discretize Eq. (16) and advance from time step n to (nþ 1), one obtains the following iterative
relation:
½unþ1 _unþ1 €unþ1�T ¼ G½un _un €un�T : ð35Þ
The form of the amplification matrix G is provided in Appendix A.
Fig. 8(a) shows contours in the h1 � h2 plane of the maximum spectral radius, qmaxðh1; h2Þ ¼ max06xDt<1qGðh1; h2;xDtÞ.

The shaded region in the plot marks the domain in which qmax has an identical unit value. On the right and the bottom sides
this domain is bounded by the lines h1 ¼ 2 and h2 ¼ 0 (excluding these lines), respectively; The tip of the domain on the left
side corresponds to the point ðh1; h2Þ ¼ ð0;3Þ.

With ðh1; h2Þ parameters located in the shaded region, the amplification matrix has no repeated eigenvalue with a unit
norm for all xDt > 0. This is illustrated in Fig. 8(b) with the eigenvalue distribution (for 0 6 xDt <1) in the complex plane
corresponding to ðh1; h2Þ ¼ ð7=10;16=3Þ: One can observe a pair of complex conjugate eigenvalues (k1 and k2) which becomes
distinct real eigenvalues for a range of moderate xDt values, and a third eigenvalue (k3) which is identically zero. For all



Fig. 8. SDMM-Newmark algorithm: contours in h1 � h2 plane of (a) the maximum spectral radius qmaxðh1; h2Þ, and (c) the fraction of energy loss per period
(computed with time step size Dt=T ¼ 0:02) and (b) distribution of eigenvalues of the amplification matrix for 0 6 xDt <1 corresponding to
ðh1; h2Þ ¼ ð7=10;16=3Þ; arrows near each curve indicate how the eigenvalues evolve as xDt increases.
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xDt > 0 no eigenvalue of the amplification matrix is repeated with a unit norm. This observation also applies to other ðh1; h2Þ
values from the shaded region. Therefore, the shaded region of Fig. 8(a) corresponds to the domain of unconditional stability
of the SDMM-Newmark algorithm.

In the presence of physical damping the SDMM-Newmark algorithm with ðh1; h2Þ from this domain is also unconditionally
stable.

Fig. 8(c) shows contours in the h1 � h2 plane of the energy loss fraction for a fixed time step size Dt=T ¼ 0:02. The distri-
bution shows that in the region h1 < 3=2 the dissipativity increases as h2 decreases for a fixed h1 value, and that in the region
h2 > 1 the dissipativity increases as h1 increases for a fixed h2 value. Comparison between Fig. 8(a) and (c) indicates that
within the domain of unconditional stability the ðh1; h2Þ values lying on the boundary curve on the left-top side
(0 6 h1 K 0:742, 3 6 h2 K 5:9) are associated with the lowest dissipativity within this family of algorithms; The ðh1; h2Þ values
lying on the bottom-right boundary curve of this domain ð1:5 < h1 < 2, 0 < h2 < 1Þ are also associated with relatively low
dissipativity, but they are more dissipative than those on the left-top boundary curve.

Fig. 9(a) shows the spectral radii as a function of time step size Dt=T for several ðh1; h2Þ values lying on the left-top bound-
ary curve of the domain of unconditional stability. The ‘‘hunch” on the curves around Dt=T � 0:83 corresponds to the



Fig. 9. SDMM-Newmark algorithm: spectral radius (a) and the fraction of energy loss per period (b) as a function of time step size Dt=T for several ðh1; h2Þ
values.
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situation where all three eigenvalues of the amplification matrix are real and distinct at those time step size values; This is
the case for the ðh1; h2Þ values residing on the left-top boundary curve except for the point ðh1; h2Þ ¼ ð1=2;4Þ, which corre-
sponds to the Bathe method. In Fig. 9(b) we compare the fraction of energy loss as a function of Dt=T for the same set of
ðh1; h2Þ values. It indicates that along the left-top boundary curve the dissipativity of the algorithm decreases as h2 increases.

The family of composite algorithms, represented by Eqs. (31)–(34), with the ðh1; h2Þ parameter values residing in the do-
main of unconditional stability (Fig. 8) will be employed to solve the nonlinear elastodynamic equation. The members with
ðh1; h2Þ values lying on the top-left boundary curve of this domain are preferred, while the rest of the family are very
dissipative.

These composite algorithms are self-starting, similar to the Bathe method. We will demonstrate the numerical perfor-
mance of these schemes with nonlinear examples in Section 5.

4. Convergence characteristics

The goal of this section is to numerically demonstrate the convergence characteristics of the time integration schemes
presented in the previous section. We consider the nonlinear vibration, with finite deformation throughout time, of a cubic
object of a compressible Neo-Hookean material, whose motion is described by an analytic solution to the nonlinear elasto-
dynamic equation.

Specifically, we consider the cubic block depicted in Fig. 10, which initially occupies the domain fðX;Y; ZÞ j 0 6 X 6
1; 0 6 Y 6 1; 0 6 Z 6 1g in its undeformed configuration. The block is assumed to be Neo-Hookean, characterized by Eq.
(4) with material constants l and k. The density of the block in its natural configuration is denoted by q0.

The setting of the problem is as follows. The face X ¼ 0 is clamped throughout time. On the rest of the faces a time-depen-
dent traction force field, T ¼ ðTX ; TY ; TZÞ, as specified below has been applied,
TX ¼ nX l Ja � 1=Jað Þ þ k log Ja=Ja½ �
TY ¼ nY log Ja

TZ ¼ nZ log Ja:

8><
>: ð36Þ
In the above equation, n ¼ ðnX ;nY ;nZÞ denotes the outward-pointing unit vector normal to the surface. The function Ja is gi-
ven by, Ja ¼ Aþ B sinðatÞ þ Cb cosðbXÞ, where A;B;C; a and b are prescribed constants. The object experiences an external
time-dependent body force field, q0f ¼ ðfX ; fY ; fZÞ, as specified below,
fX ¼ �Ba2X sinðatÞ þ ½lð1þ 1=J2
aÞ þ kð1� log JaÞ=J2

a �Cb2 sinðbXÞ=q0

fY ¼ 0
fZ ¼ 0:

8><
>: ð37Þ
The initial displacements ðuX ;uY ;uZÞ and initial velocity ð _uX ; _uY ; _uZÞ are provided,
uX ¼ ðA� 1ÞX þ C sinðbXÞ; uY ¼ uZ ¼ 0;
_uX ¼ BaX; _uY ¼ _uZ ¼ 0:

�
ð38Þ



Fig. 10. Neo-Hookean cubic block in nonlinear vibration, discretized with 5 tetrahedral elements.
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With these conditions, the problem has the following analytic solution for the displacements with respect to the coordi-
nates of the initial configuration:
uX ¼ A� 1þ B sinðatÞ½ �X þ C sinðbXÞ
uY ¼ 0
uZ ¼ 0:

8><
>: ð39Þ
It is straightforward to verify that the solution described by Eq. (39), together with the body force in Eq. (37) and the traction
force in Eq. (36), satisfies the nonlinear elastodynamic Eq. (1) for a compressible Neo-Hookean material described by Eq. (4).

To simulate the nonlinear vibration of the object numerically, we discretize the cubic domain with five tetrahedral ele-
ments (see Fig. 10). We employ a high-order spectral element method [15] for spatial discretizations of the nonlinear
momentum Eq. (1). For temporal discretization we employ the time integration schemes presented in the previous section.
Dirichlet boundary condition with zero displacement is imposed on the face X ¼ 0, and traction boundary conditions based
on Eq. (36) are imposed on the other faces. The initial conditions for the displacement and velocity are set according to Eq.
(38).

To investigate the temporal convergence of these algorithms, we use a fixed element order (i.e. order of highest expansion
polynomial in shape functions) and vary the time step size Dt systematically. For each time step size we integrate the
momentum equation over time from t = 0 to t ¼ tf , and then compute the L1; L2 and H1 errors of the displacement fields
at t ¼ tf against the analytic solution (Eq. (39)).

The temporal convergence characteristics of the proposed algorithms are shown in Fig. 11, in which we plot the L1; L2 and
H1 errors of the three displacement fields as a function of the time step size. Fig. 11(a) shows various errors versus Dt com-
puted with the GBDF-B scheme h1 ¼ 1=2; h2 ¼ 4=5. Fig. 11(b) shows the H1 error of the x-displacement field versus Dt com-
puted with various time integration methods, including the trapezoidal rule, GBDF-A ðh1 ¼ 1; h2 ¼ 0Þ, GBDF-B ðh1 ¼ 1=2; h2 ¼
4=5Þ, GBDF-TR scheme ðh1 ¼ 7=9; h2 ¼ 9=10Þ, and SDMM-Newmark composite scheme ðh1 ¼ 7=10; h2 ¼ 16=3Þ: The results are
obtained employing a fixed element order 4 for all five elements, and the problem is with the following parameter values:
k ¼ 20; l ¼ 10; q0 ¼ 1:0; A ¼ 1:2; B ¼ 0:2; C ¼ 0:1; a ¼ 1:0; b ¼ 0:01; tf ¼ 0:2:
Note that we have omitted the physical units for all the parameters in this problem as well as in all the numerical exam-
ples in subsequent sections. Throughout the paper we will assume that a consistent system of physical units have been em-
ployed for the variables and parameters in all the test problems.

It is evident that as the time step size is reduced by half the numerical errors are reduced by a factor of four. These results
demonstrate the temporal second-order accuracy of the proposed algorithms in Section 3.

5. Representative numerical examples

To evaluate the performance of the proposed time integration algorithms, we consider several three-dimensional numer-
ical example problems of nonlinear elastodynamics. We solve these problems with the proposed algorithms in Section 3, and
compare the results with those from the trapezoidal rule, the Bathe method [3], and the Park method [32]. The test problems



Fig. 11. Temporal second-order accuracy: (a) L1; L2 and H1 errors of displacements versus Dt computed with the GBDF-B ðh1 ¼ 1=2; h2 ¼ 4=5Þ algorithm, (b)
H1 errors of the x displacement versus Dt computed with various methods, for the nonlinear vibration of a Neo-Hookean cubic block. GBDF-A,
ðh1; h2Þ ¼ ð1; 0Þ; GBDF-B: ðh1; h2Þ ¼ ð1=2;4=5Þ; GBDF-TR: ðh1; h2Þ ¼ ð7=9;9=10Þ; SDMM-Newmark: ðh1; h2Þ ¼ ð7=10;16=3Þ.
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involve large deformations, large displacements and rotations, which demonstrate the difficulties encountered by some algo-
rithms. The material models considered are assumed to be of St. Venant-Kirchhoff or compressible Neo-Hookean types,
respectively described by Eqs. (2) and (4). As noted in Section 4, the units of physical variables and parameters are omitted
with the assumption that a consistent system of units are used for each problem.

The tests involve the free flight of a 3D L-shaped block. This problem has been considered previously by other researchers
(see e.g. [36]). Fig. 12 shows the initial undeformed configuration of the block, and provides all values of the geometric
dimensions. The origin of the coordinate system is located at the corner vertex that is blocked from view in the figure,
and the three axises are along the edges of the block. Two time-dependent traction forces are applied on the two end faces
of the block, as marked in Fig. 12. These forces are specified by the following functional forms:
F1ðtÞ ¼ �F2ðtÞ ¼ ð150;300;450ÞpðtÞ; pðtÞ ¼
t; 0 6 t < 2:5;
5� t; 2:5 6 t < 5;
0; t P 5:

8><
>: ð40Þ
There is no body force acting on the object. The density of the block in the undeformed configuration is chosen to be
q0 ¼ 1000. The block is at rest in its undeformed configuration at t ¼ 0.

Both St. Venant-Kirchhoff and compressible Neo-Hookean material models are considered for the L-shaped block. With
the St. Venant-Kirchhoff model we further consider two cases: a rigid block and a deformable block, implemented, respec-
tively by employing fairly large and small Young’s modulus values. Corresponding to these cases, significant or virtually no
deformations are involved during the free motion of the block.

Because the net external force acting on the block is zero, the object will simply tumble in space with no net displacement
of its center of mass. In order to simulate its motion, we discretize the domain occupied by the block with four hexahedral
elements as shown in Fig. 12, in which solid lines mark the edges of the elements. High-order spectral element expansions
are employed for spatial discretizations, as outlined in Section 2 and detailed in [15]. An element order of 3 has been em-
ployed for all elements in the spatial discretization. Traction boundary conditions according to Eq. (40) are imposed on
the end faces of the block where the external forces are applied, while traction-free boundary conditions are employed
on the other faces. The time integration algorithms presented in Section 3 are employed for temporal discretization. The ini-
tial displacements and initial velocities are set to be zero.

5.1. Rigid L-shaped block

We first investigate the case of a rigid block, implemented with a Young’s modulus value E ¼ 5� 1010, of a St. Venant-Kir-
chhoff material. The Poisson ratio ism ¼ 0:3. We have conducted long-time simulations of the object motion (over t = 1000) with
the proposed algorithms. Let us first investigate the characteristics of the total energy (Eq. (5)). Fig. 13 shows time histories of
the total energy of the tumbling block. The four plots correspond to four different time step sizes, ranging from Dt ¼ 0:25 to
Dt ¼ 2:0. The results in each plot are obtained with the GBDF-A ðh1; h2Þ ¼ ð1;0Þ, GBDF-B ðh1; h2Þ ¼ ð1=2;4=5Þ, GBDF-TR
ðh1; h2Þ ¼ ð7=9;9=10Þ, and SDMM-Newmark composite method ðh1; h2Þ ¼ ð7=10;16=3Þ. For each time step size we have also in-
cluded results computed with the trapezoidal rule, the Bathe method [3], and the Park method [32] for comparison. Simulations



Fig. 12. Undeformed configuration of the L-shaped block.

Fig. 13. Free flight of a rigid L-shaped block: time histories of total energy computed with Dt ¼ 0:25 (a), Dt ¼ 0:5 (b), Dt ¼ 1:0 (c), and Dt ¼ 2:0 (d).
Algorithmic parameters: GBDF-A, ðh1; h2Þ ¼ ð1;0Þ; GBDF-B, ðh1; h2Þ ¼ ð1=2;4=5Þ; GBDF-TR, ðh1; h2Þ ¼ ð7=9;9=10Þ; SDMM-Newmark, ðh1; h2Þ ¼ ð7=10;16=3Þ.
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with the trapezoidal rule become unstable in all these cases. Severe fluctuations develop over time in the total energy, which
ultimately grows unbounded. With a larger time step size the trapezoidal rule tends to blow up sooner.



Fig. 14. Free flight of a rigid L-shaped block: time histories of the z-component of the angular momentum computed with Dt ¼ 0:25 (a), Dt ¼ 0:5 (b),
Dt ¼ 1:0 (c), and Dt ¼ 2:0 (d). See caption of Fig. 13 for algorithmic parameter values.
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Stable computations have been attained with the proposed algorithms, as well as the Bathe and Park methods. With a
small time step size Dt ¼ 0:25, the differences between the energy curves of these methods are virtually in-distinguishable.
The total energy increases from zero to around 3:9� 104 in the initial loading stage, and stays essentially a constant after the
initial loading ðt < 5Þ is removed.

As the time step size increases, differences among the three methods become noticeable. At Dt ¼ 0:5, a small but notice-
able decay in the total energy can be observed over long-time with all except the GBDF-A and GBDF-B schemes. The energy
levels computed using the GBDF-A and GBDF-B algorithms remain a constant beyond the initial loading stage. (There is a
slight difference in the total energy levels computed with these two methods at the end of the initial loading, t ¼ 5.) As
the time step size increases to Dt ¼ 1:0 more pronounced differences in the total energy can be observed among these meth-
ods. While the energy computed with GBDF-B remains a constant, one can observe a larger energy decay with the other
methods (Fig. 13c). The Bathe method, SDMM-Newmark and Park method have produced relatively larger energy decays
compared to GBDF-A and GBDF-TR. At Dt ¼ 2:0, energy decays are observed with all the methods. But the decay with
GBDF-B and GBDF-TR is notably smaller compared with those of the other four methods (Fig. 13d).

Note that for the cases Dt ¼ 1:0 and 2.0 (Fig. 13c and d) during the initial loading stage ð0 6 t 6 5Þ a smaller time step
Dt ¼ 0:1 has been used in the computations with all the methods.

The above results indicate that, while the computations with the proposed algorithms are all stable at large time steps,
GBDF-B, GBDF-TR and GBDF-A are less dissipative than the SDMM-Newmark scheme, and they are in general also less dis-
sipative than the Bathe and Park methods.

Fig. 14 compares time histories of the z-component of the angular momentum (Eq. (6)) computed with different time step
sizes and different algorithms. Similar to the case with total energy, the angular momentum computed using the trapezoidal
rule exhibits an instability over time, and becomes unbounded eventually. On the other hand, stable computations have been
obtained with the other methods. The computed angular momentum exhibits similar characteristics to those of the total



Fig. 15. Free flight of a rigid L-shaped block: time histories of total energy computed with (a) GBDF-A and (b) GBDF-B for different algorithmic parameter
values, with a time step size Dt ¼ 1:0.

Fig. 16. Free flight of a deformable L-shaped block: time histories of the total energy computed with time step sizes Dt ¼ 0:2 (a), Dt ¼ 0:5 (b), and Dt ¼ 1:0
(c). For algorithmic parameters see caption of Fig. 13.
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Fig. 17. Free flight of a deformable L-shaped block: time histories of the z-component of the angular momentum computed with time steps Dt ¼ 0:2 (a),
Dt ¼ 0:5 (b), and Dt ¼ 1:0 (c). For algorithmic parameters see caption of Fig. 13.
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energy. At small time step sizes Dt ¼ 0:25 and 0.5, the angular momentum stays virtually a constant after the initial loading
is removed. The history curves are quite close to one another, although some differences exist among the methods about the
angular momentum values at the end of the loading stage. As the time step size increases to Dt ¼ 1:0 and 2.0, notable decay
in the magnitude of the angular momentum can be observed. The rate of decay of the angular momentum tends to be smaller
with GBDF-B and GBDF-TR than the other methods considered. The history curves of the angular momentum computed with
all the methods exhibit small-amplitude fluctuations. It is particularly noticeable with the GBDF-B scheme, and milder with
GBDF-TR, SDMM-Newmark, and the Bathe method.

The results presented above are computed with the four proposed algorithms using algorithmic parameter values that are
near optimal in terms of stability and dissipativity for each algorithm. Various other algorithmic parameter values within the
domain of stability have also been tested. Stable computations have been attained, while the dissipativity varies substan-
tially. Fig. 15 shows time histories of the total energy computed with GBDF-A (Fig. 15(a)) and GBDF-B (Fig. 15(b)) at a time
step size Dt ¼ 1:0. The results with several algorithmic parameter values have been shown in the plots, some lying on the
low dissipativity boundary of the domain of stability and others inside the domain. For GBDF-A the three parameter pairs
falling on the boundary of the stability domain (see Fig. 1(a)), ðh1; h2Þ ¼ ð1;0Þ; ð1=4;3=4Þ and (0,1), show only slight differ-
ences in dissipativity, while the scheme with a parameter pair inside the domain, ðh1; h2Þ ¼ ð3=4;3=4Þ; is significantly more
dissipative (Fig. 15a). For GBDF-B both ðh1; h2Þ ¼ ð1=2;4=5Þ and (1/2,3/2) belong to the low dissipativity boundary of the do-
main of stability (see Fig. 4(a)), but the latter is considerably more dissipative. The scheme with a parameter value inside the
domain of the stability, ðh1; h2Þ ¼ ð3=5;4=5Þ, has a substantially higher dissipativity than those on the boundaries. These re-
sults from a nonlinear problem are consistent with those from the linear stability analysis in Section 3.



Fig. 18. Snapshots of a tumbling deformable L-shaped block: (a) t ¼ 0, (b) t ¼ 4, (c) t ¼ 8, (d) t ¼ 12, (e) t ¼ 16, (f) t ¼ 20, (g) t ¼ 24, (h) t ¼ 28, and (i) t ¼ 32.
Computed using GBDF-TR composite method ðh1 ¼ 7=9; h2 ¼ 9=10Þ with Dt ¼ 0:5.
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5.2. Deformable L-shaped block

We next study the motion of a soft deformable L-shaped block of the St. Venant-Kirchhoff material, with a Young’s mod-
ulus E ¼ 5� 104 and a Poisson ratio m ¼ 0:3. A very long-time history (up to t > 4000) of the motion has been simulated.

Fig. 16 compares time histories of the total energy computed with different methods, including the proposed schemes
and the Bathe and Park methods. The three plots correspond, respectively to time step sizes Dt ¼ 0:2 (Fig. 16(a)), 0.5
(Fig. 16(b)), and 1.0 (Fig. 16(c)). The Trapezoidal rule is again observed to be unstable in all these cases, exhibiting uncon-
trolled energy growth over time. Stable computations have been achieved with the other methods. In the initial loading stage
(t = 0–5) the total energy of the block grows rapidly from zero to about 4:45� 104. Beyond the initial loading stage all the
methods exhibit energy dissipation of the high-frequency modes. With a small time step Dt ¼ 0:2 (Fig. 16(a)), after the initial
rapid decay all the energy curves appear to gradually level off and settle at certain values over long-time. The long-time en-
ergy levels resulting from different methods are comparable to one another, with those from GBDF-B and GBDF-TR slightly
higher than the rest. The history curves for the GBDF-B and GBDF-TR algorithms essentially overlap with each other over
long-time. The curves from the Bathe method and the SDMM-Newmark scheme overlap with each other essentially through-
out the run. As the time step size increases to Dt ¼ 0:5, the energy histories exhibit similar characteristics to those at
Dt ¼ 0:2. But the initial energy decay is faster and the long-time energy levels are generally lower. The long-time energy
computed with GBDF-TR stays at a higher level than the other methods, and that from the Park method is slightly lower than
the rest.

At a still larger time step Dt ¼ 1:0, results from different methods exhibit somewhat different characteristics. The energy
curves computed with both GBDF-B and the GBDF-TR level off over time after the initial rapid decay, with the energy com-
puted using the GBDF-TR algorithm at a slightly higher level (Fig. 16(c)). In contrast, the history curves computed using the
other methods show a different character; After the initial rapid energy decrease, the curves do not appear to level off over
time, but consistently decrease albeit at a slower rate.

Fig. 17 shows the evolution in time of the angular momentum of the block. Here we have plotted time histories of the z-
component of the angular momentum computed with different Dt. The angular momentum demonstrates, in a sense, the
same characteristics as the energy. In the initial loading stage the z-component of the angular momentum increases from



Fig. 19. Free flight of a deformable L-shaped block: time histories of total energy computed using GBDF-B scheme with parameter values not in the domain
of unconditional stability, ðh1; h2Þ ¼ ð1=2;1=2Þ.

Fig. 20. Free flight of L-shaped block made of a Neo-Hookean material: time histories of the total energy computed with time step sizes Dt ¼ 0:25 (a) and
Dt ¼ 1:0 (b) using various methods. See caption of Fig. 13 for algorithmic parameters.

S. Dong / Journal of Computational Physics 229 (2010) 3019–3045 3039
zero to about 1:465� 105. Note the scale of the vertical axis in these plots; Although the results from different methods show
somewhat different characteristics, their values are actually very close. The instability encountered with the trapezoidal rule
is also evident from the angular momentum plots. At Dt ¼ 0:2, the angular momentum from all methods stay essentially at a
constant level after slight initial decay. But all the history curves show small-amplitude fluctuations. This suggests that the
angular momentum is approximately conserved with these methods, but not exactly at each time step. At Dt ¼ 0:5, the angu-
lar momentum curves computed with all methods except the Bathe method and SDMM-Newmark (excluding trapezoidal
rule) level off over time, with some differences in their long-time values. On the other hand, the history curves computed
with the Bathe method and the SDMM-Newmark scheme do not appear to level off over time, although the decrease
throughout the simulation is quite slight considering the scale of the vertical axis in Fig. 17(b). As the time step size increases
to Dt ¼ 1:0, the angular momentum computed with GBDF-B and GBDF-TR stay at essentially a constant level (with fluctu-
ations) over long-time, while those with the other methods appear to decrease consistently.

These results suggest that the proposed algorithms are quite effective for solving nonlinear elastodynamic problems. Sta-
ble computations can be achieved with these methods at large time step sizes where the trapezoidal rule encounters diffi-
culties. The dissipativity of these schemes are influenced by the time step sizes, and increases with increasing time step size.



Fig. 21. Free flight of a Neo-Hookean L-shaped block: time histories of the angular momenta computed with a time step size Dt ¼ 1:0 using (a) trapezoidal
rule, (b) GBDF-A, (c) GBDF-B, (d) GBDF-TR, and (e) SDMM-Newmark. See caption of Fig. 13 for algorithmic parameters.
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Among these schemes, the dissipativity of GBDF-B and GBDF-TR appear to be the lowest within the range of time step sizes
considered. These schemes are also quite promising in terms of the computed angular momentum. In the absence of external
forces, although the angular momentum is not exactly conserved at each time step by these algorithms, it does stay



Fig. 22. Free flight of a Neo-Hookean L-shaped block: time histories of total energy (a) and z-component of the angular momentum (b) computed with
Dt ¼ 0:5 using the GBDF-B algorithm with different algorithmic parameters.
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approximately at a constant level at small time step sizes, and as the time step size increases the decay in its magnitude
appears not very significant, especially with GBDF-B and GBDF-TR.

Fig. 18 shows a temporal sequence of snapshots of the deforming L-shaped block at the initial stages of the simulation.
These are obtained using the GBDF-TR scheme with parameters ðh1; h2Þ ¼ ð7=9;9=10Þ and a time step size Dt ¼ 0:5: The
deformation of the object during the free flight is apparent. In particular, one can observe the twisting and bending of the
block, characteristic of the existing high-frequency modes in the short-term solution.

All the results presented so far with the proposed algorithms have been computed using algorithmic parameter values
residing within the respective domains of unconditional stability (Section 3). Fig. 19 illustrates the instability that may be
encountered if the parameters are not within the domain of stability. It shows time histories of the total energy of the
deformable L-shaped block computed using the GBDF-B scheme with ðh1; h2Þ ¼ ð1=2;1=2Þ; which is outside of the domain
of unconditional stability (see Fig. 4). The time step sizes Dt employed here are the same as those in Fig. 16 considered
for the other algorithms. Evidently, the total energy exhibits uncontrolled growth at all three time step sizes, and the com-
putations are unstable.
5.3. L-shaped block of Neo-Hookean material

The tests in the previous two sections involve St. Venant-Kirchhoff materials, we next study the performance of the pro-
posed algorithms for a compressible Neo-Hookean hyperelastic material, using the free flight problem of the 3D L-shaped
block. The problem setting has the same geometric parameters and external loading conditions as those in the previous
two sections. The Neo-Hookean material is characterized by Eq. (4), and the material parameters l ¼ 1:925� 104 and
k ¼ 2:885� 104 are assumed in the simulations of this section. The density of the block in the initial undeformed configu-
ration is chosen to be q0 ¼ 1000: We simulate the motion of the block using different time step sizes, and monitor the time
histories of the total energy and the angular momentum.

Fig. 20 compares time histories of the total energy computed with the four methods discussed in Section 3, together with
the trapezoidal rule, for two time step sizes Dt ¼ 0:25 and Dt ¼ 1:0: For the Dt ¼ 1:0 case a smaller time step has been used in
the initial loading stage ð0 < t < 5Þ to better resolve the external forces. In the initial loading stage the total energy of the
block increases rapidly from zero to about 4:4� 104. The computation using the trapezoidal rule fails in both cases. The
break-down is not due to uncontrolled growth of energy, as observed in previous examples with the St. Venant-Kirchhoff
materials, but because the solution yields negative values of the Jacobian (see Eq. (4)), J, at certain points within the domain.
As a result, the computation terminates abruptly without showing significant energy growth in the time history. On the
other hand, stable solutions have been obtained for long-time simulations (up to t = 4000, only the first 2000 time units
are shown in Fig. 20 for clarity) using the proposed algorithms. At Dt ¼ 0:25, with the proposed methods the total energy
decays and gradually approaches a constant level over time. The long-time energy level computed using GBDF-TR is higher
than those using the other three methods. The energy levels computed with GBDF-B and SDMM-Newmark algorithms are
close to each other over time, and are a little higher than that with GBDF-A. At a larger time step size Dt ¼ 1:0, the energy
histories produced by both GBDF-B and GBDF-TR appear to approach a constant level over time after the initial rapid decay.
The histories computed using GBDF-A and SDMM-Newmark, on the other hand, appear to decrease consistently at a small
rate for their long-term behaviors.



Table 1
Computational cost for the free flight problem of a 3D deformable L-shaped block with different algorithms.

Algorithm Wall time/step (s)

Trapezoidal rule 0.14–0.34
Bathe method 0.22
GBDF-A 0.12
GBDF-B 0.13
GBDF-TR 0.225
SDMM-Newmark 0.221
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The evolution of the angular momentum computed with different methods is compared in Fig. 21. In the plots we
show time histories of the angular momentum computed using the proposed algorithms, together with the trapezoidal
rule, with a time step size Dt ¼ 1:0. The magnitude of the angular momenta reaches a value of the order 105 at the end
of the initial loading stage. Beyond this initial stage, in the absence of external loads we observe that the angular
momentum has been approximately conserved, with only very slight decay; It remains at essentially a constant level
in the long run. With the trapezoidal rule, after the initial loading vanishes and before the computation fails, we observe
that the three components of the angular momentum stay at their respective constant values, with notable fluctuations.
With the proposed algorithms, small-amplitude fluctuations can also be observed in the time history, especially at the
early stage when the external load is removed. However, overall the angular momentum is approximately at a constant
level for all the proposed algorithms.

The results reported above for the Neo-Hookean material are obtained with some specific algorithmic parameter values,
namely, GBDF-A ðh1; h2Þ ¼ ð1;0Þ, GBDF-B ðh1; h2Þ ¼ ð1=2;4=5Þ, GBDF-TR ðh1; h2Þ ¼ ð7=9;9=10Þ, and SDMM-Newmark
ðh1; h2Þ ¼ ð7=10;16=3Þ. We have also tested other algorithmic parameter values in the domains of stability (Section 3) for dif-
ferent algorithms with this problem, and stable computations have been observed. For example, several tests with the GBDF-
B algorithm are illustrated in Fig. 22, in which we plot time histories of the total energy (Fig. 22(a)) and the z-component of
the angular momentum (Fig. 22(b)) with several ðh1; h2Þ values that fall on the boundary of and inside the domain of stability
of GBDF-B (Fig. 4). Note that the algorithmic parameter values in these plots are the same as those in Fig. 15(b), which is for a
St. Venant-Kirchhoff material.
6. Concluding remarks

In this study we have presented several second-order time integration algorithms based on a BDF-like scheme, together
with an extension of the Bathe composite strategy. The domains of appropriate algorithmic parameter values have been
determined through a linear stability analysis, and less dissipative members of each algorithm have been identified. We have
tested these algorithms with several three-dimensional nonlinear elastodynamic problems. The material models in these
tests include St. Venant-Kirchhoff and compressible Neo-Hookean materials, and the problems involve large deformations
and displacements, and rotations. Numerical tests with three-dimensional nonlinear problems involving large deformations
and rotations and different material models show that the proposed algorithms are quite effective for nonlinear elastody-
namics. Stable solutions have been obtained with these algorithms at large time step sizes when the trapezoidal rule
encounters a well-known instability.

Among the four algorithms considered here the GBDF-B scheme appears particularly attractive based on these tests and
also in terms of computational cost (see below), and is therefore recommended.

Numerical simplicity is one of the notable attributes of these algorithms. They can be implemented in a similar fashion to
the trapezoidal rule. They all result in symmetric tangential stiffness matrices for nonlinear problems. These properties are
attractive to large-scale nonlinear dynamic analysis of engineering problems.

Although the numerical tests demonstrate the promise of the proposed algorithms, they are no substitute for rigorous
theoretical analyses, and the question concerning the stability of these algorithms for general nonlinear elastodynamic prob-
lems is open. It would be valuable to perform nonlinear mathematical analyses of these algorithms that prove the numer-
ically observed characteristics. These analyses would also be valuable for further improvement of these algorithms. Such
analyses call for much future research and are left for further studies of the algorithms. The multistep nature of these algo-
rithms also leads to the necessity for some startup procedure to initiate the computations.

With regard to the computational cost, in Table 1 we summarize the average wall time per step (in seconds) for the four
algorithms presented in Section 3, the trapezoidal rule, and the Bathe method. This is for the free flight problem of a three-
dimensional deformable L-shaped block (Section 5.2) with a time step size Dt ¼ 0:5, computed on a Linux workstation (on a
single processor). For the trapezoidal rule, the number of Newton iterations per time step for convergence increases as the
simulation proceeds, especially toward the point when it becomes unstable; As a result the wall time per step starts with
around 0.14 s and increases to around 0.34 s when the computation becomes unstable. For both GBDF-A and GBDF-B algo-
rithms, the wall time per step decreases slightly as the simulation progresses, with average values of 0.12 and 0.13 s, respec-
tively. The costs of the Bathe method, GBDF-TR and SDMM-Newmark are comparable, with the GBDF-TR slightly larger;
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Since they are all composite-type methods requiring an additional solve at ðnþ 1=2Þ, their costs are about twice the cost of
GBDF-A and GBDF-B schemes.
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Appendix A. Amplification matrices

The amplification matrix G of the GBDF-A algorithm represented by Eqs. (14) and (15) for the linear vibration Eq. (16) is
given by
G ¼
G11 G12Dt

G21
1
Dt G22

" #
; ð41Þ
where
G11 ¼
� Bðh1ÞAðh2Þ

Kðh1 ;h2 ;xDtÞ �
Cðh1ÞAðh2Þ

Kðh1 ;h2 ;xDtÞ �
Dðh1ÞAðh2Þ

Kðh1 ;h2 ;xDtÞ

1 0 0

0 1 0

2
664

3
775;

G12 ¼
� Bðh2Þ

Kðh1 ;h2 ;xDtÞ �
Cðh2Þ

Kðh1 ;h2 ;xDtÞ �
Dðh2Þ

Kðh1 ;h2 ;xDtÞ

0 0 0

0 0 0

2
664

3
775;

G21 ¼

Bðh1Þx2Dt2

Kðh1 ;h2 ;xDtÞ
Cðh1Þx2Dt2

Kðh1 ;h2 ;xDtÞ
Dðh1Þx2Dt2

Kðh1 ;h2 ;xDtÞ

0 0 0

0 0 0

2
664

3
775;

G22 ¼
� Bðh2ÞAðh1Þ

Kðh1 ;h2 ;xDtÞ �
Cðh2ÞAðh1Þ

Kðh1 ;h2 ;xDtÞ �
Dðh2ÞAðh1Þ

Kðh1 ;h2 ;xDtÞ

1 0 0

0 1 0

2
664

3
775;

Kðh1; h2;xDtÞ ¼ Aðh1ÞAðh2Þ þx2Dt2:
The amplification matrix of the GBDF-B algorithm represented by Eq. (23) is given by
G ¼
G11 G12Dt

G21
1
Dt G11

" #
; ð42Þ
where
G11 ¼

� A1ðh1 ;h2ÞA2ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2 � A1ðh1 ;h2ÞA3ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2 � A1ðh1 ;h2ÞA4ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2 � A1ðh1 ;h2ÞA5ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2

1 0 0 0

0 1 0 0

0 0 1 0

2
666664

3
777775;

G12 ¼

� A2ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2 � A3ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2 � A4ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2 � A5ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2Dt2

0 0 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775;

G21 ¼ �x2Dt2G12:
The amplification matrix of the GBDF-TR scheme (Eqs. (26) and (27)) is given by
G ¼
G11 G12Dt G13Dt2

G21
1
Dt G22 G23Dt

G31
1

Dt2 G32
1
Dt G33

2
64

3
75; ð43Þ
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where
G11 ¼
U1 N3 N4

L1 0 0
1 0 0

2
64

3
75; G12 ¼

U2 U3 U4

L2 0 0
0 0 0

2
64

3
75; G13 ¼

U5

L3

0

2
64

3
75;

G21 ¼
V1 V2 V3

M1 0 0
0 0 0

2
64

3
75; G22 ¼

V4 N3 N4

M2 0 0
1 0 0

2
64

3
75; G23 ¼

V5

M3

0

2
64

3
75;

G31 ¼ W1 W2 W3½ �; G32 ¼ W4 W5 W6½ �; G33 ¼ W7½ �;
U1 ¼ A1ðh1; h2ÞðK1L1 þ K2Þ þ 1

2 K1M1; V1 ¼ �2x2ðDt=2Þ2ðK1L1 þ K2Þ þ A1ðh1; h2ÞK1M1;

U2 ¼ A1ðh1; h2ÞK1L2 þ 1
2 K1M2 þ 1

2 K2; V2 ¼ �2x2ðDt=2Þ2K3;

U3 ¼ 1
2 K3; V3 ¼ �2x2ðDt=2Þ2K4;

U4 ¼ 1
2 K4; V4 ¼ �2x2ðDt=2Þ2K1L2 þ A1ðh1; h2ÞðK1M2 þ K2Þ;

U5 ¼ A1ðh1; h2ÞK1L3 þ 1
2 K1M3; V5 ¼ �2x2ðDt=2Þ2K1L3 þ A1ðh1; h2ÞK1M3;

N3 ¼ A1ðh1; h2ÞK3; N4 ¼ A1ðh1; h2ÞK4;

W1 ¼ �4x2ðDt=2Þ2U1; W5 ¼ �4x2ðDt=2Þ2U3;

W2 ¼ �4x2ðDt=2Þ2N3; W6 ¼ �4x2ðDt=2Þ2U4;

W3 ¼ �4x2ðDt=2Þ2N4; W7 ¼ �4x2ðDt=2Þ2U5;

W4 ¼ �4x2ðDt=2Þ2U2;

K1 ¼ � A2ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2ðDt=2Þ2
; K2 ¼ � A3ðh1 ;h2Þ

A2
1ðh1 ;h2Þþx2ðDt=2Þ2

;

K3 ¼ � A4ðh1 ;h2Þ
A2

1ðh1 ;h2Þþx2ðDt=2Þ2
; K4 ¼ � A5ðh1 ;h2Þ

A2
1ðh1 ;h2Þþx2ðDt=2Þ2

;

L3 ¼ 1
16þx2Dt2 ; L1 ¼ 16L3;

L2 ¼ 8L3; M1 ¼ �4x2Dt2L3;

M2 ¼ 16�x2Dt2

16þx2Dt2 ; M3 ¼ 4L3:
The amplification matrix of the SDMM-Newmark composite scheme represented by Eqs. (31)–(34) is given by
G ¼ 1

3� 3
2 h1
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2
h i
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2

	 
2
h i G11 G12
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2
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2
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G31

2
Dt

	 
2 G32
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3
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where
G11 ¼ 3� 3
2

h1

� �
h2 þ

9
2
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� �

x2 Dt
2

� �2

;

G12 ¼ 3 2� h1ð Þh2 þ 3h1 � 4ð Þx2 Dt
2

� �2

;

G13 ¼ 5� 3h1ð Þ h2 � 2ð Þ;
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2
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� �

x2 Dt
2
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þ 1
2
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2
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;

G22 ¼ 3� 3
2
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� �
h2 þ

9
2
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� �
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2

� �2

;
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3
2
� h1

� �
h2 � 2ð Þ � h2 � 2ð Þx2 Dt

2

� �2

;

G31 ¼ � 3� 3
2

h1

� �
h2x2 Dt

2

� �2
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2

h1

� �
x4 Dt

2

� �4

;

G32 ¼ 3 h1 � 2ð Þh2x2 Dt
2

� �2

þ 4� 3h1ð Þx4 Dt
2

� �4

;

G33 ¼ 3h1 � 5ð Þ h2 � 2ð Þx2 Dt
2

� �2

:
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