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Strong and Auxiliary Forms of the Semi-Lagrangian
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We present a review of the semi-Lagrangian method for advection–diffusion
and incompressible Navier–Stokes equations discretized with high-order meth-
ods. In particular, we compare the strong form where the departure points are
computed directly via backwards integration with the auxiliary form where an
auxiliary advection equation is solved instead; the latter is also referred to as
Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of
time steps the auxiliary form is preferrable but for large time steps only the
strong form is stable.

KEY WORDS: Semi-Lagrangian method; spectral element method; incom-
pressible flow.

1. INTRODUCTION

The semi-Lagrangian method has been used primarily in advection–diffu-
sion systems due to its two useful attributes: (1) large time step allowed,
(2) stability. Moreover, implementing it with high-order discretizations
leads to minimum dispersion error. The semi-Lagrangian approach has
long been used in meteorology for numerical weather prediction, where
the use of large time step is essential for efficiency [1]. Its use, however,
in Navier–Stokes simulations has been sporadic but recent work has dem-
onstrated its efficiency, especially in the context of high-Reynolds number
simulations [2,3]. In this review paper, we present the two main versions
of the semi-Lagrangian method and examine several issues related to con-
vergence, efficiency, stability and ease of implementation.
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This method was introduced at the beginning of the 1980s [4,5],
and the basic idea is to discretize the Lagrangian derivative of the solu-
tion in time instead of the Eulerian derivative. As we shall see in Sec. 2
this requires the solution at the foot of the characteristic from each
discrete mesh point. The solution at the characteristic foot can be deter-
mined either by using backward particle tracking or equivalently by solv-
ing an auxiliary advection equation. The first version of the method is
often referred to as the strong form. The second scheme is sometimes
refereed to as the Operator Integration Factor Splitting (OIFS) scheme
[2]. However, as we shall demonstrate it can also be interpreted more as
a semi-Lagrangian scheme with an auxiliary advection equation; there-
fore, we shall refer to it as the auxiliary semi-Lagrangian scheme. Further
details about different forms of strong and weak forms of semi-Lagrangian
schemes can be found in [6] and references therein.

We now examine the potential effectiveness of the method in the
context of direct numerical simulation of turbulent flows (DNS) at high
Reynolds number (Re). Simple estimates based on the Kolmogorov
dissipative length scale suggest that the required number of degrees of
freedom scale as Re9/4 in three-dimensions [7]. What is not factored, how-
ever, in such estimate is the computational cost associated with the time-
integration of the Navier–Stokes equations, which in practice, may be the
prohibitive factor. After all, in a parallel computation the spatial resolu-
tion requirements can be alleviated by domain decomposition whereas the
time-stepping cost cannot be avoided.

To illustrate the current inefficiency of time-discretization, let us con-
sider the often-used semi-implicit Eulerian scheme, where advection is
treated explicitly. The maximum allowable time step is dictated by the
CFL number. In [3] the following ratio between the CFL-dictated time
step ∆tCFL and the Kolmogorov temporal scale τ has been derived

∆tCFL

τ
∝Re1/2 1

Nα
∝Re1/2−3α/4. (1)

Here, Nα represents the scaling of the maximum eigenvalue associated
with the spectral discretization, with N the total number of nodes in one
dimension. For example, for a Fourier discretization α =1; for Chebyshev
discretization (used often in DNS of wall-bounded turbulence) α = 2;
and for spectral/hp element methods α ≈ 3/2 (see [8], ch. 6). It is clear
from Eq. (1) that at Reynolds number of 10,000, the maximum allow-
able time step can be one order (α = 1) to four orders (α = 2) of mag-
nitude smaller than the temporal Kolmogorov scale. Therefore, in most
spectral DNS of inhomogeneous turbulence (where α � 3/2) there is an
uneven distribution of resolution in space and time, with the smallest spatial
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scale approximately matched but with the temporal scale over-resolved by
at least two to three orders of magnitude. This inefficiency of currently
employed semi-implicit schemes for DNS of inhomogeneous turbulence
has been recognized before, and attempts have been made to employ fully
implicit schemes. However, this requires Newton iterations and non-sym-
metric solvers that render the overall approach inefficient. Progress can
be made by employing semi-Lagrangian time-discretization, which could
increase significantly the maximum allowable time step while maintaining
the efficiency of symmetric solvers.

The semi-Lagrangian method depends strongly on the spatial discret-
ization. Specifically, its accuracy is particularly sensitive to the method of
backward integration of the characteristic equation as well as the interpo-
lation scheme to evaluate the solution at departure points. This has been
shown by Falcone and Ferretti [9] who conducted a rigorous analysis of
the stability and convergence properties of semi-Lagrangian schemes. Typ-
ically, the backward integration is performed by employing second-order
schemes (i.e., mid-point rule), explicitly or implicitly. In [10,11], the fourth-
order Runge–Kutta method was employed but their results did not show
any improvement over the second-order schemes. This finding is perhaps
due to low spatial resolution used in these works, which is crucial for the
overall accuracy of semi-Lagrangian schemes. The simplest semi-Lagrang-
ian scheme with linear interpolation is equivalent to the classical first-
order upwinding scheme [12], which is excessively dissipative (see [4,13]).
A popular and effective choice for interpolation methods in previous
works has been the cubic spline methods [14] (see also [15]).

The importance of high-order discretization in semi-Lagrangian meth-
ods was demonstrated by Giraldo who analyzed the dispersion and
diffusion errors of the one-dimensional linear advection equation [16].
He employed the standard Eulerian spectral element formulation and a
semi-Lagrangian formulation. Giraldo showed conclusively that the addi-
tion of the semi-Lagrangian scheme to the spectral element method intro-
duces a proper dissipation mechanism that the method requires for high
values of the Courant number. In particular, for linear elements the dis-
persion errors are plotted in Fig. 1 for both discretizations. At this order,
both schemes suffer from dispersion errors (isocontours with values less
or greater than 1) but have different error distributions. There is no error
in the amplification factor, i.e. no numerical diffusion, for the standard
spectral element method but the semi-Lagrangian scheme exhibits appre-
ciable numerical diffusion especially around Courant number C = 0.5 and
high frequencies. In fact, this is the region where the dispersive errors are
large as well, thus acting “in concert" with diffusion. However, for spec-
tral order greater than P = 4 all dispersion errors are eliminated in the
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Fig. 1. Upper: Order P = 1. Isocontours of phase errors for different frequencies (vertical
axis) and Courant number (horizontal axis). Lower: Order P =4. Left: Eulerian spectral ele-
ment scheme. Right: semi-Lagrangian scheme. (Courtesy of Giraldo [16])

semi-Lagrangian scheme but not in the standard spectral element scheme
as shown in Fig. 1. This behavior of the semi-Lagranagian scheme is true
even for Courant number C �1 (see [16]).

An intriguing finding is that the error of semi-Lagrangian schemes in
solving advection-diffusion equations decreases as the time step increases
in a certain range of parameters, and this has initially led to some errone-
ous justifications [17,18]. The error analysis in [9] showed that the overall
error of semi-Lagrangian method is indeed not monotonic with respect to
time step ∆t , and, in particular, it has the form:

O
(
∆tk + ∆xP+1

∆t

)
,

where k refers to the order of backward time integration and P to the
interpolation order; similar conclusions had been reached earlier in [19].
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The extension of semi-Lagrangian method to the solution of
Navier–Stokes equations was presented in the pioneering work of Pironneau
[5]. He demonstrated non-linear stability of the method even as the vis-
cosity approaches to zero. He also obtained suboptimal error estimates,
which were improved later by Süli [20]. Most of the previous analy-
sis and numerical implementations in CFD applications have employed
the Taylor–Hood finite element and are first-order in time [10,21,22].
In a more recent paper [23], an error analysis was conducted for the
fractional-step method for incompressible Navier–Stokes equations. In
particular, the pressure-correction version of the fractional scheme with first-
order time-stepping was analyzed and an extension to a second-order was
proposed but not analyzed. An attempt at a second-order scheme was made
in [21] but no convergence rates were documented in that work. Moreover,
results presented for the standard benchmark problem of driven-cavity flow
are markedly different than accepted results in the literature, possibly due
to an erroneous treatment of the pressure term.

In this paper, we present the strong and auxiliary forms of the
semi-Lagrangian method applied to the Navier–Stokes equations. First, we
explain the method in the context of a scalar advection–diffusion equa-
tion in Sec. 2 and demonstrate its convergence properties. We then present
the discretization for the incompressible Navier–Stokes equations follow-
ing a spectral/hp element method as well as a mixed spectral/spectral ele-
ment method, as the latter is used often in simulations of inhomogeneous
turbulent flows in simple geometries. Here we also discuss details of the
parallel implementation as the semi-Lagrangian method is typically more
difficult to implement in parallel than the Eulerian approach. We conclude
the paper with a discussion of relative merits and open issues of the two
formulations.

2. ADVECTION–DIFFUSION EQUATION

2.1. Formulation

In this section, we review the strong and auxiliary forms of the
semi-Lagrangian method for advection–diffusion equations. We first present
the main ideas and subsequently we present benchmark results. We employ
a spectral/hp element discretization and examine the fast convergence of
the combined schemes.

To demonstrate these two approaches we can consider the scalar
advection–diffusion equation

∂φ

∂t
+a ·∇φ =ν∇2φ, (2)
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where a(x, t) is an advection field. Equation (2) can equivalently be writ-
ten in Lagrangian form as

Dφ

Dt
=ν∇2φ with

D

Dt
= ∂

∂t
+a ·∇, (3)

where D/Dt is the Lagrangian or material derivative moving with the advec-
tion velocity i.e.,Dx/Dt = a. Following the semi-Lagrangian approach we
can discretize Eq. (3) in time at point xi using a first-order implicit scheme
to obtain

φn+1
i −φn

d

∆t
=ν∇2φn+1

i , (4)

where φn
d =φn(xd , tn) and xd is the so-called departure point.

In the strong form the material derivative is evaluated along the
characteristics; we can determine the departure point xd by solving the
characteristic equation Dx/Dt = a backward in time from tn+1 � t � tn

using the initial conditions x(tn+1) = xi . This approach is schematically
represented in Fig. 2(a) where we show the one-dimensional discretiza-
tion on a discrete x-t diagram. The implicit discretization of the diffusion
term is represented by the black squares. Subsequently, φ(xd) is evalu-
ated and the approximation to the Lagrangian time derivative can then be
determined. The complexity of backward particle tracking depends on the
form of a(x, t). If a(x, t) is time independent the calculation is relatively
straight-forward on a well behaved discretization. However, if the convec-
tion velocity is time dependent then different time integration strategies
can be adopted (see [3,16]). We also note that this scheme requires an
interpolation operation to evaluate φ(xd , tn).

tn+1

tn

xi xi+1xi-1

tn+1

tn

xi xi+1xi-1 dx )φ(dx

τ

1/a 1/a

(a) (b)

Fig. 2. (a) Schematic of the strong semi-Lagrangian approximation where the particle is
backward tracked from xn+1

i to determine xd and φ(xd). (b) Schematic representation of the
auxiliary semi-Lagrangian approximation where a hyperbolic advection equation is advanced
using a smaller time step to determine φ̃(xi , t

n+1).
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In the auxiliary semi-Lagrangian approach the starting point is similar
to the strong semi-Lagrangian technique [2], however instead of backward
particle tracking we solve for the departure solution φn

d directly. This can
be achieved by solving the advection part of the problem independently in
its Eulerian form and with a smaller time step. To this end, we introduce
an intermediate solution φ̃(x, τ ) and solve the problem:

Dφ̃

Dτ
= ∂φ̃

∂τ
+a ·∇φ̃ =0, tn � τ � tn+1 (5)

with initial conditions φ̃(xi , t
n)=φ(xi , t

n). Since this is a strictly hyperbolic
equation then along the characteristic the solution is constant and so
φ(xd , tn) = φ̃(xi , t

n+1). The auxiliary semi-Lagrangian method is shown
schematically in Fig. 2(b), where the solution at the departure point is
determined by the discretization of Eq. (5) using a smaller time step.
The explicit solution of Eq. (5) means that from stability considerations
the time step is restricted by a CFL condition. Nevertheless, providing
the solution of (5) can be solved more efficiently than the implicit diffu-
sion operator, then Eq. (5) can be discretized with a time step near to the
CFL limit while the implicit diffusion operator is solved less frequently in
time thereby reducing the cost of the overall algorithm for a fixed integra-
tion time. Accordingly, it is the ratio of the cost of the explicit advection
term to the implicit diffusion operator which ultimately limits the possi-
ble speedup. We also note that the time accuracy is governed by the larger
time step applied on the implicit diffusion operator.

The explicit integration of the auxiliary advection Eq. (5) could be
quite restrictive and this may make the solution of Eq. (5) relatively costly.
To make this technique tractable, it requires an efficient technique to solve
that equation, which has implications for the type of spatial discretiza-
tion adopted. It also requires an estimate of the time step restriction for
the advection problem. To this end, using a nodal spectral element Galer-
kin discretization with Gauss–Lobatto–Legendre quadrature points leads
to a diagonal mass matrix [8]. If a modal spectral element method is used,
then a discontinuous Galerkin formulation should be adopted which also
leads to a diagonal mass matrix. The first approach has been adopted by
a variety of researchers including [2,24,25], while the second approach was
proposed in [26] and has also been applied to the incompressible Navier–
Stokes equation as discussed in the next section.

2.2. Convergence

Adopting the standard benchmark problem applied in [3] we consider the
advection and diffusion of a Gaussian-cone with a transport velocity field of
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u=+x2, v =−x1

and initial condition of

φ(x1, x2,0)= e−[(x1−x0
1 )2+(x2−x0

2 )2]/2λ2
.

The exact solution to this problem is

φ(x1, x2, t)= λ2

λ2 +2νt
e−[x̂2

1+x̂2
2 ]/2(λ2+2νt),

where

x̂1 =x1 −x0
1 cos t −x0

2 sin t, x̂2 =x1 +x0
1 sin t −x0

2 cos t.

Fixing the constants as λ = 1
8 ; and (x0

1 , x0
2) = (− 1

2 ,0) we discretize the
problem with a mesh consisting of 10 × 10 quadrilateral elements in the
region −1�x1, x2 �1. The solution is then time-integrated for one revolu-
tion corresponding to a final time of t =2π .

In Fig. 3 we plot the L2 error from an Eulerian method
(Adams–Bashforth combined with Crank–Nicolson, ABCN) and the strong
semi-Lagrangian spectral/hp element (SLSE) method with fixed CFL num-
ber C =0.5 and diffusion number D=0.01. The backward integration is an
explicit mid-point rule denoted here as RK2 method. The spectral order
varies from P = 2 to 6. We observe on this semi-log plot that spectral
convergence is achieved for both methods. The SLSE method gives rela-
tively larger error at lower polynomial order P , but it quickly reaches the
O(∆t2) temporal error limit at P =6. Results with 10∆t and 20∆t , which
correspond to CFL numbers of 5 and 10, are also plotted. We observe
that as the time step increases, the error is reduced, matching the error
of the Eulerian scheme but at time step size twenty times larger. Also, a
further improvement with the fourth-order Runge–Kutta method (RK4) is
obtained at 20∆t with polynomial order P =6.

The error in the strong semi-Lagrangian method consists of two
parts: the error of the backward integration O(∆tk+1) and the error from
interpolation O(∆xP+1), where k is the order of integration method and
P is the order of the polynomial basis. Therefore, the overall accuracy of
semi-Lagrangian method is

an+1 −an
d

∆t
= da

dt
+O

(
∆tk + O(∆xP+1)

∆t

)
. (6)

A rigorous derivation of the above expression can be found in [9]. Equa-
tion (6) shows that the error is not monotonic with respect to ∆t . When
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Fig. 3. Spatial convergence of Eulerian and strong semi-Lagrangian methods at large ∆t ;
Gaussian-cone problem.

the polynomial order P is small, the interpolation error dominates. As
∆t increases, the overall error decreases. It can also be appreciated that
when the first term O(∆tk) is subdominant, further increasing k will not
improve the overall accuracy, which explains why there is no improvement
with a RK4 method over the second-order methods for low-order discreti-
zations. On the other hand, when the spatial error is subdominant at high
P , increasing ∆t increases the first error term in (6) and thus the overall
error is larger. In this case, a higher-order backward integration method
(higher k, e.g. RK4) reduces the dominant first term and improves the
solution.

To further study the structure of the error of both the strong and
auxiliary semi-Lagrangian methods, we test the SLSE method at different
time steps and spectral order P =4. We set the viscosity to a small value,
ν =4.6×10−6, in order to emphasize the effect of the advection; the final
time is T = 1 here. In Fig. 4 we plot results obtained with second-order
backward integration (k = 2) in semilog x-axes for the two semi-Lagrang-
ian forms as well as the error corresponding to the Eulerian scheme. We
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Fig. 4. Error dependence upon ∆t with second-order integration for the strong and auxil-
iary semi-Lagrangian methods; also included is the Eulerian scheme. Errors are evaluated at
a final time T =1 and at a polynomial order of P =4.

see that for both semi-Lagrangian methods the error has the structure
predicted theoretically. In particular, for this relatively low order P = 4,
the interpolation error is comparatively large, and thus the second error
term in Eq. (6) dominates. As ∆t increases, the overall accuracy improves
almost monotonically up to a large ∆t when the first error term becomes
significant. For intermediate spectral orders (e.g. P =6), however, the inter-
polation error is smaller and the first error term in Eq. (6), O(∆t2), is
comparable with the second term. As ∆t increases, this error starts to
decrease first. The O(∆t2) term then becomes dominant and the over-
all error starts to increase. At this intermediate spatial resolution, there is
clearly a competition between the two error terms resulting in the mini-
mum error around ∆t ≈ 0.04. For higher spectral orders (e.g., P =8), the
interpolation error is sufficiently small and thus the O(∆t2) term dom-
inates. The overall error then grows at an algebraic second-order rate.
These observations are also based on the plots presented in [3]. In the aux-
iliary form, we recall that the solution of the auxiliary advection equation
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is required for φ̃ which requires a CFL estimator is required to determine
the number of substeps to be used for a specified ∆t . At larger ∆t more
substeps are therefore used, and so at the largest time steps the number of
substeps had to be choosen manually. Due to the dominance of the error
in the advection step for this problem we observe a plateau over a range
of ∆t values.

3. INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

In this section, we extend the semi-Lagrangian spectral element
(SLSE) method to incompressible Navier–Stokes equations. We consider
the Navier–Stokes equations in Lagrangian form:

du
dt

=−∇p +ν∇2u, (7)

∇ ·u =0 (8)

and present a second-order time-discretization scheme based on stiffly sta-
ble integration. In [3] it was shown that the Crank–Nicolson scheme is
asymptotically unstable.

3.1. Formulation

A second-order stiffly-stable time-discretization gives

3
2 un+1 −2un

d + 1
2 un−1

d

∆t
= (−∇p +ν∇2u)n+1, (9)

where un
d is the velocity u at the departure point xn

d at time level tn

and un−1
d is the velocity at the departure point xn−1

d at time level tn−1.
In the strong semi-Lagrangian form the departure points xn

d and xn−1
d

are obtained by solving the characteristic equation over a single time
level ∆t and over two time levels 2∆t , respectively. In the auxiliary semi-
Lagrangian method the auxiliary advection equation is solved to obtain
un−1
d and un

d directly.
A three-step splitting scheme can be used to solve (9), i.e.,

û −2un
d + 1

2 un−1
d

∆t
= 0, (10)

ˆ̂u − û
∆t

= −∇pn+1, (11)
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3
2 un+1 − ˆ̂u

∆t
= ν∇2un+1. (12)

The discrete divergence-free condition ∇ · un+1 = 0 results in a consistent
Poisson equation for the pressure

∇2pn+1 = 1
∆t

∇ · û

with accurate pressure boundary conditions of the form [8]:

∂p

∂n
=−n · [û/∆t +ν∇ ×ωn],

where n is the unit normal, we assume that un+1 = 0 on the boundary
and ω is the vorticity. Although the pressure boundary condition is treated
explicitly, the overall scheme is unconditionally stable as has shown rigor-
ously in [27] for the Stokes problem for first- and second-order schemes.

3.2. Numerical Results

In this section, we present numerical results by applying the above
discretizations to different benchmark problems. In all the tests employ-
ing the strong SLSE method, the second-order Runge–Kutta method is
employed for backward integration.

First, we use the Taylor vortex problem, an exact solution to the
unsteady Navier–Stokes equations, in order to quantify the error in the
SLSE method. It has the form:

u = − cosx sin y e−2t/Re,

v = sin x cosy e−2t/Re,

p = −1
4
(cos 2x + cos 2y)e−4t/Re.

The computational domain is a square defined by the coordinates
[−π

2 , π
2

]
in each direction. A mesh consisting of 2×2 quadrilateral elements is used
and the Reynolds number is fixed at 106.

In Fig. 5 (a) we plot the dependence of the error upon the size of
time step for the stiffly–stable method at a final time of T = 2π . The
results are similar to the behavior reported earlier for the advection–
diffusion equation. Note here the accuracy of SLSE method is dictated
by the term O

(
∆t2 + ∆xP+1

∆t

)
. At low P the interpolation error dominates,

and increasing ∆t decreases the overall error, as shown for P =6. When
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Fig. 5. Error dependence on ∆t . (a) strong SLSE results, and (b) comparison of strong
and auxiliary SLSE for P =12.
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the interpolation error is small at P =12, the ∆t2 term dominates and fur-
ther increase in ∆t increases the overall error. The P =8 curve shows the
competition between these two terms. In this plot, the largest time step
0.03 corresponds to the CFL number of about 4. In Fig. 5(b) we compare
the strong and auxiliary SLSE at polynomial order P = 12. Both SLSE
schemes demonstrate a similar error dependence with ∆t whereas the
Eulerian scheme has a much smaller error. Recalling the high Reynolds
number adopted in this test we observe that the solution over the time
period considered is close to being constant. The Eulerian scheme there-
fore benefits from the more stationary nature of the solution since there is
no time error associated with this Eulerian scheme for an exactly station-
ary problem. We emphasize that for both the SLSE schemes it is the size
of ∆t and not the CFL number that restricts the use of semi-Lagrangian
method. In other words, for the SLSE method, the restriction on the size
of time step is solely due to accuracy considerations but not due to stabil-
ity. Finally, we note that in the auxiliary semi-Lagrangian method a mixed
second-order Runge–Kutta and Adams–Bashforth scheme was applied in
time to solve the auxiliary advection equation. In this approach the first
step of the auxiliary problem is advanced using a second-order Runge–Ku-
tta scheme. In subsequent steps a second order Adams–Bashforth scheme
is applied, which is computationally more efficient due to the multi-step
nature since it requires fewer right-hand-side evaluations than the Runge–
Kutta schemes per time step.

The extension of the SLSE method to three dimensions is
straight-forward. Here we study the effect of the three-dimensionality in
the driven cavity flow as a function of the aspect ratio. The Reynolds
number is set at 400 and the aspect ratio was set to 1, 3, and 5; the
spectral order is P = 10. We plot velocity profiles at the center symmet-
ric plane in Fig. 6. Three-dimensionality effects are more pronounced, as
expected, for the expansion ratio 1 as the results deviate the most from
the corresponding two-dimensional profile, while for the aspect ratio 5, a
trend towards two-dimensionality is observed. The results shown in the
figure are obtained by SLSE method with CFL number 20. Results of the
Eulerian spectral/hp element method are also computed with CFL num-
ber at 0.6 but are not shown in the plot because they are essentially iden-
tical as the SLSE results. In [21], the semi-Lagrangian (quadratic) finite
element method is used to solve the 2D driven cavity flow. The reported
results show significant difference with results of [28], and the authors
claim favorable comparison with three-dimensional experimental results
of [29]. The present simulations of the three-dimensional driven cavity
flow suggest that such an agreement may have been fortuitous. A possible
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explanation for such large discrepancy is an incorrect treatment of pres-
sure in the formulation of [21].

3.3. Hybrid Discretizations

In turbulent channel flow simulations Fourier expansions are
preferrable in the homogeneous directions; in the wall-normal direction
spectral/hp element discretization can be employed. When one applies the
semi-Lagrangian method to channel simulations with such a hybrid discret-
ization, Lagrange interpolation is the natural choice for interpolations in
the wall-normal direction, which is consistent with the spectral/hp elment
discretizations [8]. In the homogeneous directions, the most straight-for-
ward interpolation approach is to construct the interpolant employing all
the Fourier modes. However, the computional cost with this approach turns
out to be very high [30]. We present next two local high-order interpolation
schemes in the Fourier directions for the semi-Lagrangian method.

We employ Lagrange and Hermite local interpolations in Fourier
directions in the strong semi-Lagrangian method. Given a set of dis-
tinct points {xj }nj=0, some function f (x) and its derivative f ′(x) on these
points, the (2n+1) degree Hermite interpolant approximating the function
is expressed by

p(x) =
n∑

j=0

f (xj )Hn,j (x)+
n∑

j=0

f ′(xj )Ĥn,j (x), (13)

where

Hn,j (x)= [1−2(x −xj )L
′
n,j (xj )]L2

n,j (x), Ĥn,j (x)= (x −xj )L
2
n,j (x)

and Ln,j (x) is the Lagrange polynomial

Ln,j (x)=
n∏

i=0,i �=j

x −xi

xj −xi

.

Let us assume that x and z are the homogeneous directions of the
channel. The velocity derivatives ∂u

∂x
, ∂u

∂z
and ∂2u

∂x∂z
, on the grid points need

to be computed when the Hermite interpolation is applied in the semi-
Lagrangian method. We can obtain these derivatives accurately and effi-
ciently by computing them in the Fourier space followed by an inverse
Fourier transform.

We examine the accuracy of the semi-Lagrangian method with Lagrange
and Hermite local interpolations with a 3D analytic flow solutions to the
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unsteady Navier–Stokes equations expressed by

u = sin(mx) cos(ly) cos(nz)e−t/Re, (14)

v = −m+n

l
cos(mx) sin(ly) cos(nz)e−t/Re, (15)

w = cos(mx) cos(ly) sin(nz)e−t/Re, (16)

p = −m+n

l2Re
(m2 + l2 +n2 −1) cos(mx) cos(ly) cos(nz)e−t/Re

+
[m(m+n)

4l2
sin2(mx) cos(2ly) cos2(nz)

+ (m+n)2

4l2
cos2(mx) cos(2ly) cos2(nz)

+n(m+n)

4l2
cos2(mx) cos(2ly) sin2(nz)

]
e−2t/Re, (17)

subject to the following force:

fx = 1
Re

(m2 + l2 +n2 −1)
[
1+ m(m+n)

l2

]
sin(mx) cos(ly) cos(nz)e−t/Re

+(m/2) sin(2mx) cos2(ly) cos2(nz)e−2t/Re

+((m+n)/2) sin(2mx) sin2(ly) cos2(nz)e−2t/Re

−(n/2) sin(2mx) cos2(ly) sin2(nz)e−2t/Re

−mn(m+n)

4l2
sin(2mx) cos(2ly)e−2t/Re, (18)

fy = 0, (19)

fz = 1
Re

(m2 + l2 +n2 −1)
[
1+ n(m+n)

l2

]
cos(mx) cos(ly) sin(nz)e−t/Re

−(m/2) sin2(mx) cos2(ly) sin(2nz)e−2t/Re

+((m+n)/2) cos2(mx) sin2(ly) sin(2nz)e−2t/Re

+(n/2) cos2(mx) cos2(ly) sin(2nz)e−2t/Re

−mn(m+n)

4l2
cos(2ly) sin(2nz)e−2t/Re. (20)

The flow domain is a (2π)3 cube (0 � x � 2π , −π � y � π , 0 � z � 2π ).
The homogeneous directions are x and z directions, in which periodic
boundary conditions are applied. Dirichlet boundary conditions based
on the analytic solution are imposed at y = −π,π . We employ 16 grid
points in x and z directions and one spectral element in the y direc-
tion. The Navier–Stokes equations are integrated with a stiffly-stable
semi-Lagrangian method (second-order accurate in time) from t =0 to t =T .
We then compute the L2 error of the computed flow field at t =T against
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the exact solution. We employ Lagrange interpolation and Hermite inter-
polation for interpolating the velocity on the departure points, respectively.
The number of grid points is fixed in homogeneous directions, and the order
of the spectral element in the y direction is varied in the tests. Fig. 7 shows
the L2 error of the y velocity component as a function of the spectral ele-
ment order for a flow with the following parameters: m = l = n = 1, Re =
1.0, T = 1.0. With Hermite interpolation we observe exponential decrease
of the error whereas with Lagrange interpolation we only observe exponen-
tial decrease of the error at low element orders; this trend disappears at high
element orders for a fixed order of Lagrange interpolation. We also observe
that for increasing order of Lagrange interpolation the exponential conver-
gence continues. However, increasing the Lagrange interpolation order nota-
bly increases the computational cost. For example, numerical experiments
show that a seventh-order Lagrange interpolation computation costs about
twice as much as a third-order Hermite interpolation computation for this
test problem. These results indicate that for the semi-Lagrangian method,
Hermite interpolation is superior in accuracy and cost-effectiveness to the
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Fig. 7. L2 error of y-component velocity as a function of the polynomial order of the
spectral element, P , for an 3D unsteady analytic flow field.
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Lagrange interpolation. Next we fix the order of the spectral element at
P =8, and then vary the time step width ∆t . In Fig. 8 we plot the L2 errors
of the velocity as a function of the time step with Hermite interpolation.
The results demonstrate a trend of error consistent with that expressed by
Eq. (6).

Interpolations are the most expensive operations in the semi-
Lagrangian method. The local nature of Hermite and Lagrange interpo-
lations and the uniform grid in the homogeneous directions allow for an
efficient parallelization scheme for handling interpolations in this method.
The channel flow domain is decomposed in the streamwise direction, with
each processor computing one sub-domain. In the interpolation step, we
differentiate grid points in a “shadow region” near the boundary of each
sub-domain from those points in the interior of the sub-domain. Interpo-
lation on the points in the shadow region depends on the velocity data
from neighboring processors. Interpolation on the interior points requires
data from the same processor only. Therefore, only data in the shadow
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regions need to be communicated between neighboring processors in the
interpolation step. Parallel efficiency can be greatly improved by overlap-
ping the communications of the shadow data with the computations on
the interior points with non-blocking message-passing routines such as
those provided by the Message Passing Interface (MPI). Specifically, before
interpolating on the interior points each processor first posts non-blocking
send/receive requests with neighboring processors. Then, all processors per-
form interpolations on their own interior points, while communications of
the shadow data are handled by the system in the background. After com-
pleting the interior interpolation, the processor checks the status of non-
blocking communications, which is most likely already complete. So the
processor proceeds to interpolate on the shadow points. In rare cases when
the comunication is still not complete, the processor needs to wait until the
shadow data becomes available. With the above method, we can effectively
hide communications of the shadow data behind the useful computations on
the interior points. Figure 9 shows the parallel speedup of the semi-Lagrang-
ian method with Hermite interpolation on a 643 grid, demonstrating a good
parallel efficiency.

4. SUMMARY AND DISCUSSION

Two forms of the semi-Lagrangian method discretized with high-order
in space were presented and applied to advection–diffusion and incom-
pressible Navier–Stokes equations. The strong form is free from the CFL–
restriction and thus very large time steps can be used, dictated only by
accuracy considerations. This should not be interpreted as violation of the
CFL condition, as the numerical domain of dependence of the solution
still contains its domain of dependence [9]. The auxiliary form extends
substantially the CFL number compared to the Eulerian scheme but it
is not CFL-free because of the explicit treatment of an auxiliary advec-
tion equation in a substepping procedure. An interesting aspect of the
method is the structure of the temporal (advection) error, which reveals
non-monotonic trend with the time step. This behavior depends strongly
on the interpolation procedure involved and inaccurate representations
may mask this trend.

With regards to efficiency, both the strong and auxiliary semi-Lagrang-
ian methods require more computational cost than the Eulerian counterpart
on a per time step consideration. In the strong semi-Lagrangian method we
require backwards particle tracking from every quadrature point and then
interpolation of the polynomial approximation at non-quadrature points.
Backward particle tracking can be expensive in deformed elements and
is more intricate to parallelize. In contrast, the auxiliary semi-Lagrangian



Strong and Auxiliary Forms 343

Processors

S
pe

ed
-u

p

10 20 30

5

10

15

20

25

30
Semi-Lagrangian

Ideal

Fig. 9. Parallel speedup of the strong semi-Lagrangian method with Hermite interpolation
on a grid 643 for a turbulence channel simulation. One spectral element of order P =64 was
used in the y-direction.

method uses “more standard” implementation from the Eulerian point of
view and so can benefit from existing concepts for parallelisation. How-
ever, the cost of performing each full time step ∆t in the auxiliary approach
is dependent upon the number of substeps that are necessary to maintain
the CFL stability of the advection problem. Therefore, if the cost of solv-
ing one step of the advection problem is the same as the cost of inverting
the implicit diffusion operator in the previous advection–diffusion exam-
ple then there would not appear to be any benefit of using the auxiliary
semi-Lagrangian method independent of the size of ∆t that would be
achieved. The ratio of the computational cost of the advection step to
the diffusion step is therefore very important. However, for the strong
semi-Lagrangian method there is a distinct advantage to using larger time
steps providing stability restrictions are not violated. This is because the cost
of the backward particle tracking in the strong semi-Lagrangian method is
relatively independent of ∆t . It would therefore seem that for intermediate
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time steps the auxiliary semi-Lagrangian method is preferrable whereas for
large time steps the strong semi-Lagrangian will prevail.

We now turn our attention to the stability of the strong semi-Lagrang-
ian method, which has been studied in [9]. In particular, L∞ stability holds
for any low-order interpolation, i.e., piecewise linear or bilinear approxi-
mation. In the general linear high-order case, unconditional stability with
respect to time step holds for fixed spatial discretization for any ∆t > 0.
However, this is not true with respect to any order of interpolation, say
order P , unless monotone interpolating schemes are used for the departure
point.

With respect to the L2 stability, using von Neumann analysis, Falcone
and Ferretti [9] showed that for equidistant interpolations of order higher
than second instabilities may arise on a fixed grid. However, this can be
overcome by employing smaller “sliding” stencils of grid points surround-
ing the departure point xd . This is what is actually done in practice. For
non-equidistant grids with Lagrangian or Hermite interpolations, L2 sta-
bility holds although a rigorous theory is incomplete.

The question of consistency of semi-Lagrangian schemes has also
been raised in the past. We note, however, that as ∆t,∆x → 0, then it is
easy to show that the error also aproaches zero. For finite ∆x and ∆t →0,
we see from Fig. 4 that the error goes to a constant value dictated by the
spatial discretization error.

Another cause of instability may be due to the intersection of the
approximate trajectories. A sufficient condition to avoid this has been
derived in [31] and states that

∆t < |J−1
a |, (21)

involving the Jacobian with respect to the velocity field a, which in general
varies in space and time.

Finally, boundary conditions should be carefully treated as the tracking
procedure may search for points outside the domain due to the large time
step taken. In [9], a modified algorithm is proposed, where the grid points
around the boundary are treated with a timestep δt <∆t . This clearly com-
plicates the implementation.
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