NODES, MODES

AND FLOW CODES

Massively parallel supercomputers seem the best hope
for achieving progress on ‘grand challenge’ problems
such as understanding high-Reynolds-number furbulent flows.

George Em Karniadakis and Steven A. Orszag

Understanding turbulent flows is a “grand challenge™’
comparable to other prominent scientific problems such as
the large-scale structure of the universe and the nature of
subatomic particles. In contrast to many of the other
grand challenges, progress on the basic theory of turbu-
lence translates nearly immediately into a wide range of
engineering applications and technological advances that
affect many aspects of everyday life.

Numerical prediction of fluid flows is at the heart of
understanding and modeling turbulence. However, such
computational fluid dynamics simulations challenge the
capabilities of both algorithms and the fastest available
supercomputers. In 1970 Howard Emmons” reviewed the
possibilities for numerical modeling of fluid dynamics and
concluded: “The problem of turbulent flows is still the big
holdout. This straightforward calculation of turbulent
flows—necessarily three-dimensional and nonsteady—
requires a number of numerical operations too great for
the foreseeable future.” However, within a year of the
publication of his article, the field of direct numerical
simulation (DNS) of turbulence was initiated with the
achievement of accurate simulations of wind-tunnel flows
at moderate Reynolds numbers.? (The Reynolds number,
a dimensionless measure of the degree of nonlinearity of a
flow, is defined as R = v,,,.L/v, where v,,. is the rms
velocity, v is the kinematic viscosity of the fluid, and L is a
typical length scale at which the energy maintaining the
flow is input. At sufficiently high Reynolds numbers,
flows become turbulent.) In the last 20 years, the field of
turbulence simulation has developed in two directions.
First, turbulence simulations are now regularly per-
formed in simple geometries, and extensive databases of
flow fields have been constructed for the analysis of
turbulent and even laminar-turbulent transitional inter-
actions.* Second, simulations of turbulent flows in proto-
type complex geometries are now emerging.” (See figure 1
and the cover of this issue.)
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Incompressible fluid flows are governed by the
Navier-Stokes equations,

av
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where v is the velocity field, @ = V % v is the vorticity field,
and Il =p + % v° is the pressure head, where p is the

pressure. In direct numerical simulation, the Navier—
Stokes equations are solved at all scales for which there is
appreciable kinetic energy. At large Reynolds numbers,
the Kolmogorov theory of small scales in turbulence shows
that eddies are appreciably excited at scales ranging in
size from L, at which energy input takes place, down to
n=L/R"*, at which viscous dissipation becomes signifi-
cant. (See the article by Uriel Frisch and Orszag in
PHYSICS TODAY, January 1990, page 24.) Since turbulent
flows are necessarily time dependent and three-dimen-
sional and since each excited eddy requires at least one
grid point (or mode) to describe it, as R increases, the
spatial resolution, or number of modes, required to
describe the flow increases at least as fast as (R*)°.

With conventional DNS methods, the time step must
be no larger than #/v,,,. in order to resolve the motion of
small eddies as they are swept around by large ones with
rms velocity v,,,.. Because large-scale turbulence evolves
on a time scale of order L/v,,,., on the order of R** time
steps are required. Thus the computational work require-
ment (embodied in the number of modes times the number
of time steps) for DNS of turbulence scales roughly as R®
and increases by an order of magnitude if R is doubled.
This type of rapid increase in resolution and correspond-
ing increase in computational work requirements is the
challenge of DNS at high Reynolds numbers and necessi-
tates the use of theory to remove degrees of freedom and
simplify the computations.

Two alternative approaches aim to alleviate the
computational requirements of DNS of turbulence: Large-
eddy simulations® use a fixed spatial resolution, and the
effects of eddies that are not resolved are modeled using
gradient transport ideas such as eddy viscosity. (See the
article by Frisch and Orszag.) Reynolds-averaged Navier—
Stokes simulations model all turbulent fluctuations theo-

¢ 1993 American Instifute of Physics



Effects of riblets on turbulence as simulated by a spectral-element method on the Delta
Touchstone computer. Colors indicate the instantaneous magnitude of the streamwise
component of the velocity; the highest values occur in the middle of the channel. Values are
shown at three different cross-flow planes. The mean flow is from left to right, and the
turbulence is fully developed and statistically steady at a Reynolds number (based on flow
rate) of 3500. Computed turbulence intensities indicate that the reduction of fluctuations
near the wall with riblets (bottom) results in a 6% percent drag reduction in this geometry.
(Courtesy of Douglas Chu, Catherine H. Crawford and Ronald D. Henderson, Princeton

University.) Figure 1

retically or empirically—not just the ones smaller than
the grid spacing. Recently we have studied a variant of
Reynolds-averaged Navier-Stokes modeling called very-
large-eddy simulation, which has some features of large-
eddy simulation: All statistically isotropic eddies are
modeled, while large-scale anisotropic eddies are simulat-
ed explicitly.”

The four images on the cover of this issue illustrate
the effect of increasing Reynolds number on flow past a
sphere. The top three images, at R = 300 (top image), 500
and 1000, are direct numerical simulations. The bottom
image, at R = 20000, is a large-eddy simulation. Each
image shows the surface at which the axial velocity is 90%
of the free stream velocity, colored according to the local
vorticity magnitude. Red indicates high vorticity; white,
low vorticity. These simulations were performed on an
Intel iPSC/860 32-node hypercube using a parallel spec-
tral-element Fourier code, as discussed later. The large-
scale flow pattern is present at all these Reynolds
numbers, but for R = 1000 the excitation of small scales
(indicated by vorticity) increases rapidly, making DNS
impractical at current capabilities.

The need for parallel processing

There is now a broad consensus that major discoveries in
key applications of turbulent flows would be within grasp
if computers 1000 times faster than today’s conventional

supercomputers were available, assuming equal progress
in algorithms and software to exploit that computer power
and effective visualization techniques to use the results of
the computations. This consensus has been realized in the
High Performance Computing and Communications Ini-
tiative, whose goal is the development and application of
teraflop (10'* floating-point operations per second) com-
puters in the second half of the 1990s. This thousandfold
improvement in useful computing capability will be
accompanied by a hundredfold improvement in available
computer networking capability.

It is estimated that a teraflop computer could perform
Reynolds-averaged Navier-Stokes calculations of flow
past a complete aircraft, large-eddy simulation of flow past
a wing and DNS of flow past an airfoil, all at moderate
Reynolds number (R on the order of 10%). Following
Andrei Kolmogorov's scaling arguments, similar esti-
mates show that DNS of a complete aircraft will require at
least an exaflop (10" flops) computer.® This example of
computing flow past an aircraft is typical: Even with
teraflop computing power, progress on real engineering
applications will require synergism among computing,
theory (to describe the effects of small-scale motions) and
prototype experiments” (to elucidate fundamental phys-
ical phenomena).

We will be able to achieve teraflop speeds in this
decade only by using massively parallel supercomputer
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architectures. This development will fit the pattern of
major changes in computer technology and architecture
that have occurred about every 20 years since the 1940s.
Early computers, motivated by the needs of World War II,
were sequential (von Neumann) machines in which one set
of arithmetic operations had to be completed before
further operations could be executed. By the early 1960s
technological improvements in speeds and densities of
electronic components led to an increase in computer
speeds and memory sizes by about a factor of 1000 over the
early prototype computers. In the 1960s sequential
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SIMD and MIMD architectures. In a single-
instruction, multiple-data-stream computer (a),
a single control unit manages the operations of
P processing elements, each with a local
memory. Each processing element performs
precisely the same operation or stays idle
during each clock period of the computer. In
a multiple-instruction, multiple-data-stream
computer (b), independent control units
manage the operations of the processing
elements. Each processing element may
execute asynchronously from the others; the
computations are synchronized at various
times by sending messages between
processing elements. In either architecture,
interconnections between processing elements
can be local (mesh topology) or global
(hypercube, nonblocking switch, shared
memory and so on). Figure 2

supercomputers gave way to supercomputers with pipe-
lined architectures, such as the Control Data Corp 6600
and 7600 computers. Then in the late 1970s, vector
supercomputers such as those of Cray Research Inc were
introduced, in which vector operations on 64 elements
were combined with pipelined operations. By the mid-
1980s computer speeds had increased from their mid-
1960s values by another factor of roughly 1000 (a factor of
2 every two years) as a result of component speeds (and
densities) increasing by a factor of 25, vector and
pipelining architectural improvements yielding roughly a
factor-of-10 increase, and the first parallel application of
several processors to the same job yielding an efficiency
factor of nearly 4 on the Cray XMP and Cray 2. We can
now foresee a further thousandfold speed increase by the
end of the 1990s due to additional increases in parallel
efficiencies in excess of a factor of 100 and component
speed and density improvements of roughly a factor of 10.
It is now expected that teraflop speeds will be achieved by
massively parallel supercomputers with a few thousand
processors each achieving a maximum speed of approxi-
mately 1 gigaflop (10° flops).

A medium-size scientific computation that now takes
5 hours on a Cray YMP running at 200 megaflops and that
would take over 28 years on a Macintosh at 0.004
megaflops would require less than 4 seconds on the
teraflop computer. Similarly, the solution of the grand
challenge turbulence problems discussed here that should
require 2 weeks per run on a teraflop computer would
have required several centuries to run on the Cray YMP
and millennia on the Macintosh.

Nodes: Parallel computers

An extensive body of literature on the design and
application of parallel computer systems already exists'®
and emphasizes programming models and the parallel
efficiencies attainable by them. Here we also wish to
emphasize other considerations that determine the effec-
tiveness of such systems for turbulence simulation.

Prototype Parallel Computer can be used to
model how memory size, processing speed
and data transfer rates (wp, , s and pep)
must be matched for efficient parallel
computation. A shared memory serves as the
interconnect topology among the processing
elements, and a fast disk serves as a large
data bank. Figure 3



We believe that one should approach the design of a
computer system to solve physical problems much as one
approaches the design of a laboratory to perform an
experiment. One must take into account all resolution
and computational requirements, including the balance
among memory size, processing speed and the bandwidths
of various components. However, it is nearly impossible
to address these issues in a generic way because of the
large variety of existing computer architectures. Here we
will try to make some progress by first addressing the
issues of programming model and parallel efficiency, and
then, in order to address other issues, focusing on the
“Prototype Parallel Computer,” a system that has many
components in common with existing and proposed
parallel computers.

A popular taxonomy for parallel computers, intro-
duced by Michael Flynn, divides the programming models
into two classes: single instruction, multiple data stream
(SIMD) and multiple instruction, multiple data stream
(MIMD). In an SIMD computer, such as the Thinking
Machines CM-2 or an NCUBE Inc computer, each processor
performs the same arithmetic operation (or stays idle)
during each computer clock cycle, as controlled by a
central control unit. (See figure 2a.) Programs in this
model, also referred to as data parallel programs,'’ use
high-level languages (for example, parallel extensions of
FORTRAN and c), and computation and communication
among processors is synchronized automatically at every
clock period.

On a multiple-instruction, multiple-data-stream com-
puter (see figure 2b) each of the parallel processing units
executes operations independently of the others, subject to
synchronization by the passing of messages among proces-
sors at specified time intervals. The parallel data distribu-
tion and the message-passing are both under user control.
Examples of MIMD systems include the Intel Gamma, the
Delta Touchstone computers and, with fewer but more
powerful processors, the Cray C-90. (See the box on
this page for a prescient 1922 description of an
MIMD computer.)

While it is often easier to design compilers and
programs for SIMD multiprocessors because of the unifor-
mity among processors, such systems may be subject to
great computational inefficiencies because of their inflexi-
bility at stages of a computation in which there are
relatively few identical operations. There has been a
natural evolution of multiprocessor systems toward the
more flexible MIMD models, especially the merged-
programming model, in which there is a single program
(perhaps executing distinct instructions) on each node.
The merged-programming model is a hybrid between the
data parallel model and the message-passing model and is
exemplified in the newest Connection Machine, the CM-5.
In this single-program, multiple-data model, data parallel
programs can enable or disable the message-passing mode.
Thus one can take advantage of the best features of
both models.

There is no universal yardstick with which to measure
performance of computer systems, and the use of a single
number, such as the peak performance quoted by the
manufacturer, to characterize performance is often mis-
leading. So that different aspects of the computer system
are measured, performance is commonly evaluated in

terms of benchmark runs consisting of small code seg-
ments (“kernels”) and prototype applications. This ap-

'A Myriad Computers at Work'’

In his landmark treatise Weather Prediction by Numerical
Process (Cambridge University Press, 1922), the British
meteorologist Lewis Fry Richardson demonstrated re-
markable prescience in his description of a futuristic
multiple-instruction, multiple-data-stream parallel com-
puting facility for weather forecasting, albeit with human
“"computers’’:

“Imagine a large hall like a theatre, except that the
circles and galleries go right round through the space
usually occupied by the stage. The walls of this chamber
are painted to form a map of the globe. . .. A myriad
computers are at work upon the weather of the part of the
map where each sits, but each computer attends only to
one equation or part of an equation. The work of each
region is coordinated by an official of higher rank. ...
From the floor of the pit a tall pillar rises to half the height
of the hall. It carries a large pulpit on its top. In this sits
the man in charge of the whole theatre; he is surrounded
by several assistants and messengers. One of his duties is
to maintain a uniform speed of progress in all parts of the
globe. In this respect he is like the conductor of an
orchestra in which the instruments are slide rules and
calculating machines. But instead of waving a baton he
turns a beam of rosy light upon any region that is running
ahead of the rest, and a beam of blue light upon those
who are behindhand.”

proach, however, is still dependent on the quality of
software rather than just on hardware characteristics.
The computer science community has recognized the
controversy over performance evaluation methods and
has made several recent attempts to provide more
objective performance metrics for parallel computers.
Gene Amdahl noticed long ago that the efficiency of a
parallel computer system depends critically on the frac-
tion m of the total number of arithmetic operations that
can be done in parallel.'® Consider a computation that
requires time 7" on a single processor. If there are P such
processors executing in parallel, the parallelizable opera-
tions require time m7/P, while the remaining fraction
(1 —m) of computations done on a single processor
requires time (1 — m)T. Thus the total time is reduced to
[(1 — m) + m/P]T, giving a scalar performance measure
Eamge Tl 3)
(1—m) 4+ m/P
which is the effective number of processors used. For
example, if m =1, then &= P, implying that all the
processors are used effectively; if m =0, then &=
Equation 3, called Amdahl’s law, shows that massively
parallel computers with large P require massively paral-
lelizable computations. For example, if P is large and
m =1 — 1/P, then { is approximately P/2: Only half of the
computer is used effectively. The effective performance of
the system can be measured by the parallel efficiency
Ey = &/P, which is about 1/(k + 1) when m =1 — k/P.
The scalar performance measure & can sometimes be
misleading, since it may favor inefficient but highly
parallelizable algorithms over more efficient algorithms
that may be more difficult to map onto a parallel
multiprocessor computer.'® There are several industry-
standard benchmark programs such as Whetstone, Dhry-
stone and Linpack that are for nonparallel systems but
have parallel extensions. While these benchmarks have
been used extensively in all advanced computer system
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evaluations, specific benchmarks have been developed for
evaluating shared- and distributed-memory parallel com-
puters. These vary from simple parallel loops, which
measure the abilities of parallelizing compilers, to the
PERFECT benchmark, which consists of 13 programs
(including several fluid dynamics programs), and MIMD
benchmarks such as Genesis, which consists of programs
for fast Fourier transforms, molecular dynamics, linear
algebra and numerical solutions of elliptic partial differ-
ential equations.

Measures of performance based on Amdahl’s law are
particularly effective for small programs that do not
require extensive and intensive use of computer memory.
Most programs used as computer benchmarks are of this
sort, but they do not represent many of the requirements
for the solution of grand challenge problems like turbu-
lence simulation. For example, we can now simulate a
field of homogeneous turbulence at Reynolds numbers
comparable to those of low-turbulence-level laboratory
wind tunnels in one day on a 50-megaflop, 32-megaword
desk-side superworkstation using 128* modes. In 1970
such a computation would have required many months on
the CDC 7600 supercomputer even though the peak CPU
speed of the CDC 7600 was also roughly 50 megaflops.
This marked difference in throughput is due mainly to the
limited memory size of the CDC 7600, which would have
made necessary many slow data transfers to disk.

We believe the issues of balancing memory, network
speed and processing speed in computer design are best
addressed by examining the Prototype Parallel Computer,
depicted in figure 3, which we designed to solve a three-
dimensional fluid dynamics problem. The key compo-
nents of the PPC are an interconnecting set of P processing
elements with distributed local memories, a shared global
memory and a fast disk system. To avoid computational
bottlenecks, data must be transferable among these
components in roughly comparable times. We start by
considering memory size, because we envision that grand
challenge problems will have the computer fully dedicated
to them for periods of 10° seconds or so (roughly two weeks)
per run. This situation is quite different from that of
running a shared resource at a computer center, in which
many jobs contend for resources simultaneously.

Let us assume that N® modes are used to resolve the
flow field (N = 1024, for example, will be possible within
the next two years). The total memory required (including
all three velocity components, pressure and various
history data) is then K, N* for some constant K, of order
10, so we require the disk system to have memory size
M, >K,N® The shared memory is assumed to be large
enough to hold several dozen two-dimensional planes of
data, so that its size Mg >Ks N?, where Kj is at least 3-10
times the number of planes of data stored in the shared
memory. Finally, the local memories must be large
enough to hold several “pencils” of one-dimensional data,
so their size M, > K, N, where K; is 3-10 times the
number of pencils stored in each local memory. (The
values of these K factors depend on the number of
variables needed at each mode for the most memory-
intensive steps of the computation and on the latency time
of the storage device at the next higher level) If we
assume that the size of the shared memory is P times that
of the local memories, that is, Mg =PM, , then we can
avoid discussions of the detailed architectural intercon-
nections among processors of the PPC.

Next we assume that a total of yN? computations are
required per time step, where y is the number of
operations per mode (or grid point) per time step. In fluid
dynamics computations y is usually of order 250-5000,
depending on the algorithm. Here y is a measure of the
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computational complexity of the numerical method used
to solve the flow equations (see the discussion in the next
section). We assume that the code is highly parallelizable
and does not suffer from inefficiencies due to paralleliza-
tion; that is, we assume Ep = 1.

To proceed with the design of the PPC for our
turbulence problem we first choose M, and Mg as
described above. Next we choose the number of processors
P so that the computations can be accomplished in 10°
seconds. That is, we choose P so that N,yN?<10°PS,
where N, is the number of time steps required and S is the
speed of each processor in flops. Typically N, ~100N. For
example, in the immediate future we can envisage S = 100
megaflops and N = 1024, so that more than 1000 proces-
sors will be required.

Each time step of the computation takes yN?®/PS
seconds, and in an efficient design all data transfers must
also be completed in that time. If data are transferred
between each processor and local memory at speed pp;
words per second, between each local memory and shared
memory at a speed u, s, and between shared memory and
fast disk at speed usp; and if at each time step there are
Qs N? words transferred between disk and shared mem-
ory, and a total of @, s N? words transferred between all lo-
cal memories and shared memory, then we require

N.’l N.’i N;i Nﬁ
Qs —=Q ~y——=7
s Hsp = Puy s Poppy, PS

(4)

where 0=1-2 is the typical number of operations that a
processing element performs on each word of data that is
transferred to it from a local memory. Thus, with S = 100
megaflops, P= 1000, y = 1000, Qsp =20 and ;s =50
(typical values for a spectral turbulence simulation), we
must have ugp, = 15 gigabytes/sec, u; s =40 megabytes/sec
and up;, =800 megabytes/sec. If K =10 and N = 1024,
then the disk size must be at least M, = 100 gigabytes,
while Mg and PM; may be an order of magnitude or more
smaller.

The principal conclusion from this analysis using the
PPC model is that the solution of these large DNS
problems requires a correspondingly large storage device
(a fast disk in the case of the PPC) with a high transfer rate
between the corresponding storage components. One
must scale up the numbers given in this example to
estimate performance requirements for an efficient and
effective teraflop multiprocessor computer.

Modes: Discrete approximations to flows

Just as supercomputer architectures have undergone
significant changes roughly every 20 years, so too have the
numerical methods that solve incompressible- and com-
pressible-flow problems. Early work was based almost
exclusively on finite-difference methods, which approxi-
mate derivatives by discrete differences. Then in the
1960s, finite-element methods (based on variational for-
mulations in terms of piecewise polynomial representa-
tions of the solution) came to the fore. Spectral methods,
discussed below, underwent significant development
through the 1970s and '80s, and most current work on the
direct numerical simulation of turbulence uses them.
Today the emphasis is on combining the best features of all
the previous methods to yield efficient and accurate
hybrid flow solvers.

We distinguish between methods that have been used
primarily for simulations of incompressible turbulence
and methods that have been used for simulations of
compressible turbulence containing shock waves, which
typically require special treatment. For incompressible
flows we discuss spectral, spectral-element and particle
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methods, while for compressible flows we discuss hybrid
finite-difference methods, including flux-corrected trans-
port and piecewise parabolic methods. All these methods
have been used for direct numerical simulation and large-
eddy simulation of turbulence.

Spectral methods. In spectral methods the Navier-
Stokes equations are solved using series expansions in
terms of smooth functions such as complex exponentials
and orthogonal polynomials. The first direct numerical
simulation of homogeneous, isotropic turbulence” used a
Fourier series representation of solutions of the incom-
pressible Navier-Stokes equation in a periodic box with
32% modes. Fast transform techniques were employed to
move freely between Fourier and physical space represen-
tations of fields. The computational complexity of this
spectral algorithm is relatively low; for N = 1000 we obtain
¥=500, and more than 80% of the CPU time is spent on
fast Fourier transforms. The key computational kernels
(or code segments) are the fast Fourier transforms and the
array transposes necessary to access different spatial
directions.

Let us illustrate these points by outlining how such a
spectral computer code is designed to solve the time-
discretized Navier-Stokes equations,

S | n—1 (X 2gn 4+ 1 Loz —1
"____"'_=v"xm"_vn+”vv + Vv 1{5}
2At 2

V=0 ®)

where At is the time step, v" is the velocity field at time
step n, and w" = Vxv" is the vorticity field. The time-
stepping scheme used in equation 5 leads to errors of order
(At)®. At the start of a time step we assume that v* and
v" — ! are stored on the disk of the PPC in terms of their

Kraichnan.) Figure 4

complex Fourier coefficients v"(k,p,q) and v* ~'(kp,q).
The momenta (k,p,q) are the (x,y,z2) wavenumbers. The
stages of the computation are given in the box on page 40.
(See also figure 3.)

By optimizing memory allocations in the algorithm
shown in the box it is possible to achieve a parallel
implementation with K =6 and @, = 18. Such a spectral
code with N =512 currently runs at 20 seconds per time
step in 32-bit precision on a 512-processor Intel Delta
computer'® (30 times faster than on a single-processor
Cray YMP) and at 30 seconds per time step on a 64-
kilobyte CM-200."" These speeds, however, are less than
one-third of the code's theoretical peak speeds on these
computers because of interprocessor communication and
memory access delays, so that these machine resources are
not quite balanced according to the criteria developed for
the PPC.

Similar spectral codes are now routinely used* to
study boundary-layer flows and flows in channels using
Fourier representations parallel to the boundary but
using Chebyshev or Jacobi polynomials in the inhomoge-
neous directions. For these problems the required compu-
tational kernels include fast Fourier transforms, direct
matrix-vector multiplications, and inversions of tridiago-
nal matrices (matrices whose only nonzero elements are
on the diagonal and adjacent to it). The corresponding
complexity measure is y=800.

In the past decade spectral methods have been
extended to problems in complex geometries, such as flow
past a sphere. (See the cover of this issue.)

Spectral-element methods'® combine some of the
best features of spectral methods with those of finite-
element methods by decomposing the domain into subdo-
mains within which the variables and geometry are
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represented as high-order tensor products of spectral
polyn_ornials. In this approach there is only a weak
coupling between the dependent variables of adjacent
subdomains, resulting in relatively sparse matrices that
must be solved. The latter feature is critical to keeping
the memory requirements and the processing time, and
hence the computational complexity, of the method within
reasonable bounds. In addition, the intrinsic coarse
granularity (the “domain decomposition”) of spectral-
element methods leads naturally to a geometry-based
distribution of work among processors that allows a high
degree of parallelism.'”” The key computational kernels
are scalar products, matrix—-vector multiplications and
matrix-matrix multiplications. The corresponding value
for y is approximately 2500.

Particle methods have been used for simulating a
variety of incompressible and compressible flows and for
plasma simulations (see the article by John M. Dawson,
Victor Decyk, Richard Sydora and Paulett Liewer on page
64). For incompressible flows two types of particle
methods are popular: vortex methods and lattice gases.
Random vortex methods have been used to simulate high-
Reynolds-number, mostly incompressible, turbulent flows,
including shear flows of chemically reacting species.'® In
methods of this sort vorticity is approximated by a
collection of particles (or “vortex blobs”) that carry
discrete quantities of vorticity. The corresponding veloc-
ity field is obtained from the vorticity field by the
Biot-Savart law (by analogy with the deduction of a
magnetic field from underlying current loops). The
computational kernels involve the solution of N-body
problems for the interior of the domain and on the
boundary of the flow, and the solution of a potential-flow

Steps in Typical Parallel Spectral Program

1. Import x—y planes of v* from disk storage (DS) to
shared memory (SM).

2. Import x-pencils from SM to local memory (LM) and
compute x-fast Fourier transform (FFT) of v and @" .
Result: v"(x,p,q), ©"(x,p,q).

3. Export results of step 2 from LM to SM.

4. Import y-pencils from SM to LM and compute y-FFT.
Result: v7(x,y,q), o”(x,y,q).

5. Export results of step 4 from LM to SM to DS.

6. Import x—z planes from DS to SM.

7. Import z-pencils from SM to LM and compute
z-FFT. Result: v"(x,y,2), o"(x,y,2). Then compute
r=v" X" in physical space and perform inverse z-
FFT of r. Result: rlx,y,q).

8. Export r from LM to SM to DS.

9. Import x-y planes of rlx,y,q) and v" ' (x,y,2) from
DS to SM.

10. Import x-pencils of rix,y,q) from SM to LM and
compute inverse x-FFT. Result: rlk,y,q).

11. Export results of step 10 from LM to SM.

12. Import y-pencils of rlk,y,q) from SM to LM and
compute inverse y-FFT of r. Result: rlk,p,q).

13. Solve for I1 algebraically to impose incompressibil-
ity: Ilk,p,q) = — ilkry + prs + gr3)/ (k% + p? + g2).
(This equation is derived by applying equation 6 to
equation 5 and Fourier-transforming.)

14, Import v ~ ' (k,p,q) from SM to LM and evaluate
v" * ' (k,p,q) using the Fourier transform of equation
5. Result: v* *'(k,p,q).

15. Export v *' from LM to SM to DS, completing the
time-step cycle.
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problem to guarantee that the induced vorticity does not
cause flow across the boundary. In addition, viscous
effects require the dynamic generation of vortex elements
at the boundary to impose the condition that fluid does not
slip along the wall at the boundary.

Lattice methods, including lattice gases and lattice
versions of the Boltzmann and Bhatnagar-Gross-Krook
(BGK) kinetic equations,'? are intrinsically parallelizable
due to local interactions and communications. They
involve a novel statistical mechanics of discrete particles
with discrete velocities whose average coarse-grained
behavior follows the Navier-Stokes equations. These
methods are particularly effective in treating highly
complex flows, such as porous media flows, multi-
phase flows and flows over rough boundaries. Recently
there has been interest in the possibility of extending
these techniques to perform large-eddy simulation of
turbulence.

Finally, it is possible to combine the application of
these lattice or other low-order finite-difference descrip-
tions in local regions with high-order spectral-element
descriptions applied in the remainder of the region.'®

Hybrid difference methods. Flux-corrected trans-
port methods were originally developed to treat problems
involving strong shocks, blast waves and chemically
reactive flows. More recently they have been used in
simulating compressible turbulent flows. They enforce
the physical principles of positivity and causality on the
numerical solution of problems involving sharp disconti-
nuities.”® These methods modify relatively conventional
difference methods for incorporating hyperbolic conserva-
tion laws by using solution-dependent flux limiters that
prevent the appearance of artificial extrema and hence
artificial oscillations in the solution. Three-dimensional
compressible codes are developed using one-dimensional
subroutines; this is justified mathematically by factoring
evolution operators (“directional splitting”). A three-
dimensional computation requires roughly 30 calls to one-
dimensional subroutines. The computational complexity
is y=2500.

The piecewise parabolic method®' is a hybrid scheme
that combines classical difference methods and high-order
interpolation techniques constrained so that sharp flow
features are resolved using only about two computational
cells. In this method there is no explicit incorporation of
viscous dissipation; instead dissipation is introduced at
high wavenumbers by discretization errors that arise in
approximating the inviscid Euler equations®' The
scheme also uses directional splitting. Subdomains, typi-
cally three-dimensional bricks that constitute a part of a
three-dimensional uniform grid, are assigned to individual
nodes. The computational and data-communication com-
plexity of the piecewise parabolic method is due to local fi-
nite-difference arithmetic and transfer of the five primi-
tive variables residing along edges of the subdomains. The
computational complexity is y=2500.

Flow codes: Parallel simulations of turbulence

We now briefly describe four applications of parallel
computers to turbulent flow problems; the first two
involve incompressible flows, while the latter two involve
compressible supersonic flows.

Homogeneous turbulence. A 512° spectral simula-
tion'® has been performed on the 64K CM-200 SIMD
parallel computer to verify Kolmogorov’s theory of small
eddies. (See the article by Frisch and Orszag.) With this
high resolution it was possible to simulate homogeneous
turbulence with confidence up to Taylor microscale
Reynolds numbers R, =200. In figure 4 we give a log-log
plot of the energy spectra, rescaled by a characteristic
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Decaying supersonic turbulence simulated using a three-dimensional piecewise parabolic method on the
CM-5. Colors indicate normalized pressure, with values increasing from red to yellow to green to blue; 7 is the
time it takes a sound wave to propagate across the periodic computational box. The volume rendering is based
on an opacity proportional to the negative velocity divergence, so that regions near shock waves are most
opaque. (Courtesy of David H. Porter and Paul R. Woodward, University of Minnesota; and Annick Pouquet,

Observatoire de la Cote d’'Azur.) Figure 5

dissipation wavenumber k,, , for several Reynolds num bers
R, . The results plotted in this figure show that Kolmogor-
ov’s universal scaling theory collapses all the data to a
single curve and thereby gives an accurate description of
turbulence energetics.

Drag reduction by riblets. One of the more
interesting methods for reducing boundary-layer drag
uses “riblets”—microgrooves aligned with the mean flow
direction. The skins of some species of fast-swimming
sharks have riblets. Riblets were successfully employed in
the 1987 America’s Cup competition and have already
been tested at flight conditions. It has been found that
riblets can reduce drag by 4-12% for flow over a flat plate.
However, no clear explanation of the mechanism of
turbulent drag reduction by riblets has yet been con-
firmed. To advance the understanding and expedite the
design, placement and shape of riblets, direct numerical
simulation of flows with riblets have been performed using
a hybrid spectral-element-Fourier spectral method on the
Intel Gamma and Delta Touchstone parallel computers.?*
With 512 processors, speeds in excess of 3 gigaflops are
obtained (3 seconds per time step for 100 elements of
resolution 1010 256). Figure 1 shows the instanta-
neous streamwise velocity component of the three-dimen-
sional flow field at three different cross-flow planes. The
simultaneous visualization of flow structures on the upper
(smooth) wall and the lower (riblet) wall leads to quantita-
tive predictions and to a qualitative model of the
turbulence production and associated shear stress.

Supersonic, compressible homogeneous turbu-
lence. High-resolution (up to 512*) simulations of super-
sonic homogeneous turbulence have been carried out on
the parallel CM-5 computer using the piecewise parabolic
method?' and on the Intel Touchstone prototype using a
sixth-order finite-difference method.*® For the CM-5 code
the data are partitioned into 512 blocks mapped onto 512
nodes; the code runs at approximately 1.5 gigaflops using
only the scalar CM-5 chips. Figure 5 shows a perspective
volume rendering of the pressure field of a turbulence
decay run. The simulation begins with a field of homoge-
neous turbulence with rms Mach number 1.1; the goal is to
see how shock waves develop as the turbulence dissipates.
The figure shows the pressure at times 0.37, 1.07 and 2.0r,
where 7 is the time that it takes a sound wave to propagate
across the computational box. Apparently the number of

shocks increases and the typical shock strength decreases
with time, although there are still some fairly large
pressure jumps even at later times. Such simulations
show that in a supersonic flow vorticity is produced by
shock curvature and shock intersections rather than by
the random vortex stretching mechanism that is dominant
in subsonic and incompressible flows.

Supersonic reacting shear layer. Parallel flux-
corrected transport computations of supersonic, multispe-
cies, chemically reacting, exothermic turbulent flows have
run at 800 megaflops on the CM-200 with 16K processors
and have been used to evaluate new concepts for high-
speed propulsion.”* Figure 6 shows the hydrogen mole
fraction at an advanced stage in the mixing of two
counterflowing supersonic streams of hydrogen and air in
a small (1 em <1 cm) region. Such conditions might be
found in the engine of the proposed National Aerospace
Plane. Because the computations involve nine species
undergoing physicochemical processes (including convec-
tion, thermal conduction and chemical reactions), they tax
the capabilities of the most powerful parallel computers.

Perspective

Experience has shown that each time a new supercom-
puter is introduced, it takes several years for software to
mature on the new architecture, and usually by the time
the software has matured, new versions of the computer
system are available. Nevertheless, it has been possible to
make effective use of the new architectures at an early
date for computational fluid dynamics (CFD), even with-
out effective, general purpose software. In fact, it is in the
early years of new architectures that many of the most
important scientific discoveries occur. To achieve such
results, one must understand the basic computer architec-
ture and its optimal use, which may require using low-
level (even assembly) languages. The knowledge gained in
these leading-edge CFD applications has been of direct
benefit to developers of compilers and higher-level lan-
guages. Effective collaborations between CFD scientists
and computer hardware and software experts will be
critical to the development of the new teraflop computer
environments.

Electronic component speeds and densities have
improved by a factor of more than 10° in the last half-cen-
tury. This development is unrivaled in other fields of

PHYSICS TODAY  MARCH 1993 41



human endeavor; if automobiles had undergone similar
improvements, today a Cadillac would sell for less than a
penny, or it would be capable of a peak speed in excess of
1% of the speed of light, or one gallon of gas would suffice
for about ten trips to the Moon. Despite these remarkable
advances in computer electronics, the motivating force
behind computer developments has been (and will likely
continue to be) the grand challenge applications. Indeed,
it was the application of numerical weather forecasting
that inspired the British meteorologist Lewis Fry Richard-
son in 1922 to foresee the use of MIMD parallel computers.
(See the box on page 37.)

In the same way, the foresight of CFD scientists
following in Richardson’s tradition will likely drive many
of the most significant future computer developments. We
expect that continued development of hybrid numerical
methods, in conjunction with the development of physical
models (based on fundamental theory and integrated with
the results of prototype experiments) and the considera-
tion of computer architectures like the Prototype Parallel
Computer, will form the basis for breakthroughs on the
grand challenges in fluid mechanics.

« % »

We would like to acknowledge our colleagues, too numerous to
mention here, who have provided us with up-to-date information
in this rapidly developing field.
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