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Jean-Luc Guermond et.al proposed an entropy-based nonlinear viscosity ([2, 3]) to solve hyper-
bolic equations.

1. ALGORITHM
We consider the hyperbolic equation
ou+ V- f(u) =0, u(x,0) = ug(x), xeQt>0 (1)

subject to appropriate boundary conditions. It is well know that Cauchy or the initial boundary
value problem has a unique entropy solution satisfying

OE(u)+V-F(u) <0, (2)
where entropy E(u) is a convex function and F'(u) = [ E'(u)f’(u)du is the entropy flux. The idea
of the entropy-based nonlinear viscosity is to construct viscosity through the entropy residual:

D(z,t) = 0:E(u(z,t)) + V- F(u(z,t)),x € Q,t > 0. (3)

Let up(+,t) be the numerical approximation of the exact solution u at time ¢ (and similarly subscript
n denote the approximation of the variables). The entropy viscosity method comprises of the
following steps ([3]):

(1) Given an entropy pair (E, F'), define the entropy residual:

D(z,t) = Oy E(u(x,t)) + V- F(u(x,t)),z € Q,t > 0.
(2) Use this residual to define a viscosity, say vg

vp(a,t) = cph®(@)R(Dy (1)) /|E(un) — E(up)||o0,

where h(x) is the local mesh size at € 2, E is the space-averaged value of the entropy,
cg is a tunable constant and R is a positive function to be decided (R(Djy) = |Dy| in this
report and also in [2, 3]).

(3) Introduce an upper bound to the entropy viscosity:

Vmax(ma t) = CmaxMmax Max |f’(u(y, t))|
yeEV:

Here V, is a yet to be defined neighborhood of @, f/(u(y,t)) is the local wave speed.
(4) Define the entropy viscosity:

vy = S(min(VmaX) VE))?

where S is a yet to be defined smoothing operator that depends on the space approximation
(the simplest case is S = I).
(5) Augment the discrete form of the conservation law (1) with the dissipation term —V -
(v, Vup,) and make the viscosity explicit.
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To conclude the equation we in fact solve is the advection-diffusion equation with artificial viscosity:
Ou+V - f(u) = 0:(v(u)Oru). (4)

At time step txy1, the viscosity v is made explicit and evaluated at time .

This simple idea is mesh and approximation independent and can be applied to any equation or
physical system supplemented with an entropy equation/inequality.

For time integral, the semi-discretized equation

d
&U =L(U)
is solved with 3rd-order TVD Runge-Kutta (also called SSP Runge-Kutta [1]). To approximate
0y E(u), second order finite difference is used:
3E(u") — 4E(u™ 1) + BE(u™?)
2At

For n =1 first order finite difference is used and for n = 0 let 0;F = 0.

8tEn ~ s n > 2.

2. COMPUTATIONAL RESULTS
In this section we present two 1-D computational results:
e Burges equation with shock wave fully developed:
O+ 0,(u?/2) =0, €0, L]
u(z,0) = sin(2nx/L).
The final time is T' = L/4, which is 1/4 period.
e Long time evolution of transport equation.
Ou+0yu=0, ze€l0,1]
with initial condition
exp(—300(2z — 0.3)?) |2z — 0.3] < 0.25,

(2,0) 1 |2z — 0.9] < 0.2,
u\r,v) = _ 1/2
(1 —(22559)?) |22 — 1.6] < 0.2,
0 otherwise.

The final time is T' = 100 which is 100 period.
Figure 1 shows the initial condition and the final results for these two problems.
2.1. Fourier collocation method. For 1-D Burges equation, we set E(u) = u?/2, R(D) =
|D|,S = I. The result is shown in Fig. 2 Table 1 shows the convergence rates in L; and Lo

norm. We can see that for discontinuous problem the convergence rate in L1 norm is 1 and 0.5 in
Lo norm.

TABLE 1. L; and Lo error and the convergence rate of the solution of Burges equation

h Ly rate Lo rate
27/100 | 1.551e-1 - | 2.715e-1 -
27/200 | 8.095e-2 0.94 | 1.967e-1 0.46
27 /400 | 4.305e-2 0.91 | 1.408e-1 0.48
27/800 | 2.168e-2 0.99 | 9.928e-2  0.50
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FIGURE 1. Initial condition and exact solution for Burges equation (left) on [0, L]
at T'= L/4 and transport equation (right) on [0,1] at 7' = 100. For the transport
equation the exact solution is the same as the initial condition so only one curve is
shown.
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FIGURE 2. Left: Solution of Burges equation on [0,27|. t = /2, amax = 2/,
a = 0.1. Right: L; and Lo error of the solution of Burges equation on [0, 27] with

different h.

0.1

2.2. Spectral element method. The spectral element shape functions are the Lagrange poly-
nomials based on the k + 1 Gauss-Lobatto-Legendre points in 1D where k is the order of the
polynomials. The quadrature points are based on the Gauss-Lobatto-Legendre points so that the
interpolation points and quadrature points coincide. We compute the solution at ¢ = 100, with
k = 2,4,8. The mesh is composed of 200/k cells so that the total number of degrees of freedom is
200. The parameters are set as ¢pax = 0.1/k,cg = 1.0, At = 0.1hyin. We can see from left plot of
Figure 3 that if we do not include viscosity there will be severe oscillations even with polynomial
of order 8. In the right plot of Figure 3 results by viscosity is shown. We can observe that there
is no oscillations in the result by using entropy-based viscosity.
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FIGURE 3. Solution of transport equation without viscosity (left) and with entropy-
based viscosity (right). In the right plot k = 8.
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