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Part I: Molecular Dynamics

e Basics of MD simulation
e motivation, history, typical length and time scales

 Potentials
e Non-bonded interactions
e Bonded interactions

e Algorithms for time integration
 Verlet, velocity-Verlet, Beeman

e How do you practically run a MD simulation
e Scaling, Periodic BC, Potential cut-offs, cell-list and Verlet list,
thermostats

e Analysis of MD

e Configurations, time correlations, transport properties



Continuum mechanics vs. atomistic viewpoint

Continuum assumption: (PDEs)

Material can be modeled as a continuous mass that fills the entire region of space
it occupies.

No underlying inhomogeneous microstructure, that is, matter can be divided
infinitely without change of material properties.

It ignores the fact that matter is made of atoms.

Only valid on length scales much greater than that of inter-atomic distances.

Atomistic viewpoint: (Newton’s second law F=ma)

Material is made of discrete atoms.
No spatial discretization necessary — given by atomic distances

More fundamental description of the world, does not distinguish different
subjects ( physics, chemistry, biology, material science, et. al.)



Length and time scales for different models
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D. G. Vlachos, Adv. Chem. Eng., 2005, 30: 1-61.



Basics of MID simulation

If all of scientific knowledge were to be destroyed, and only one sentence passed on to the
next generations of creatures, what statement would contain the most information in the

fewest words?
Richard Feynman: “| believe it is the atomic hypothesis (or the atomic fact, or whatever you

wish to call it) that all things are made of atoms.” - The Feynman Lectures on Physics

Motivation of MD simulation

The computer experiments (/n-silico experiments):
* For a better understanding of underlying mechanisms of real experiments

2002, Molecular dynamics simulation of the ice nucleation
s 2and growth process leading to water freezing,

i M Matsumoto, S Saito and | Ohmine
28 Nature 416, 409-413

« Allow to study the dynamic processes at atomistic level
« Dynamical events control processes which affect functional properties of the

biomolecules.




Basics of MID simulation

History

Rahman published a landmark simulation, establishing the field.

PHYSICAL REVIEW VOLUME 136, NUMBER 2A 19 OCTOBER 1964

Correlations in the Motion of Atoms in Liquid Argon*

A. RaumaN
Argonne National Laboratory, Argonne, Illinois
(Received 6 May 1964)

A system of 864 particles interacting with a Lennard-Jones potential and obeying classical equations of
motion has been studied on a digital computer (CDC 3600) to simulate molecular dynamics in liquid argon
at 94.4°K and a density of 1.374 g cm™3, The pair-correlation function and the constant of self-diffusion are
found to agree well with experiment ; the latter is 159 lower than the experimental value. The spectrum of
the velocity autocorrelation function shows a broad maximum in the frequency region w=0.25(ksT /#%). The
shape of the Van Hove function G,(7,f) attains a maximum departure from a Gaussian at about ¢=3.0
% 10712 sec and becomes a Gaussian again at about 1071 sec. The Van Hove function Ga(r,?) has been com-
pared with the convolution approximation of Vineyard, showing that this approximation gives a too rapid
decay of G4(r,f) with time. A delayed-convolution approximation has been suggested which gives a better fit
with G4(7,f) ; this delayed convolution makes G4(7,f) decay as ¢* at short times and as / at long times.

Only 864 atomes,
System properties, structure of atoms and coefficient of self-diffusion, compared well
with experimental data



Basics of MID simulation

History

1975, Computer simulation of protein folding

M Levitt, A Warshel

Nature 253:94.

(~750 atoms)

1979, Dynamics of ligand binding to heme protein
DA Case, M Karplus

J Mol Biol 132:343

M. Levitt, A. Warshel together with M. Karplus received the 2013 Nobel Prize in Chemistry
awarded in part for the application of MD to proteins.

2015, Nothing to Sneeze At: A Dynamic and Integrative
Computational Model of an Influenza A Virion

T Reddy, D Shorthouse, DL Parton, E Jefferys, et al.
Structure 23, 584-597

(> 10 M particles)




Basics of MID simulation

Typical length and time scales of MD systems

Length scale:

Limited by the number of atoms that can be included in the simulation.
Typical MD systems contain thousands to millions of atoms.

System size: several nanometres to hundreds of nanometres.

(1nm =10""m)

Time scale:

Time step is limited by the smallest oscillation period of fastest atomic motions.

« @
f ~100THz = 10%s1

Simulation times: picoseconds to nanoseconds.

(1ps =1071%5,1ns = 107%s)



Basics of MID simulation

A MD system is made of many atoms

* N particles
e Massm;

* Positionr;
* Velocity v;

Total energy of system

E=K+V
N N
1 2
Y 4 Y v
i=1 i=1 Coupled system of N-body problem,
Equation of motion for atoms no exact solution for N > 2
dz I
m; dt2 — _Vriv(ri)

» System of coupled 2" order nonlinear differential equations
e Solved by discretizing in time (spatial discretization given by individual atoms)



Basics of MID simulation

Procedure of MD simulation

r; (t = O)

[Initial atomic model] _
v;i(t =0)

d

[Calculate forces acting on each atom] F=-0V(r)
dri

l -

[Move each atom according to those forces] dt .
l — FL'

l M

[Advance simulation time by a time step]




Part I: Molecular Dynamics

e Potentials

e Non-bonded interactions
e Bonded interactions



Potentials

Non-Bonded interactions

Van der Waals interaction is referred to as the combination of attractive and
repulsive forces between two atoms, which are not bonded to efach other.

v \
1
Lennard-Jones potential: Vi
Y
12 6 A
+ + Oij Oij 0 NS
I V = 4‘6' . S _— | X M
J Lj ij B ~ I P
Tij Tij 7
r‘] If’llfr"

The attractive part (power 6) has been experjimentally validated.
The repulsive part (power 12) is empirical.

- 1
Lorentz-Berthelot mixing rules: o;; = E(Uii + ajj),eij = /JE€ii€jj

Coulomb interaction is the electrostatic forces between two atoms.




Potentials

Bonded interactions 1: Bond stretching

I/;)ond — Kb (I/;] _’/'O)2

Vibration of O-H bond

Bond length: r, = 0.958A

Frequency: f = 101.9 THz ~ 101%s™1
Period: T =~ 10~ 1*s

(A =10""m,nm = 10~°m)

(fs = 1071%s,ps = 107125, ns = 107%)



Potentials

Bonded interactions 2: Bond angle bending

4 le — Kﬁ(eijk _90)2

ang

. Vibration of O-H angle bending
\\\‘Q\\\g ‘f;""}jl{{‘”f Bond Iength: 60 = 104.45

.\\3 “ ,. Frequency: f = 47.8 THz = 5 X 101351
Period: T =~ 2 x 10~ 14



Potentials

Bonded interactions 3 : Proper dihedral angle bending (Torsion)

>"t_’jkl‘

V;orsion = K¢ [1 T COS(n¢z'jkl )]
Ethane eclifsed Ethane staggered H
H H
H H
Torsion:

Periodicity needs to be enforced.

L 1 " 1 L 1 M 1 "
120 180 240 300 360
Dihedral (degrees)



Potentials

Bonded interactions 4 : Improper dihedral angle bending

2
Vd'hedml — Ka) (C() - a)O)

1
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Part I: Molecular Dynamics

e Algorithms for time integration
e Verlet, velocity-Verlet, Beeman



Algorithms for time integration

Integrator: Verlet Algorithm
Taylor expansion for particle position at t + At:
r(t+At) = r(t) + v(t)At + %Atza(t) +O(At?)

Similarly, the old position at t — At :

1
r(t—At) =r(t) - v(t)At + EAtza(t) —0O(At?)
Combine the above two equation, we have
r(t+At) = 2r(t) —r(t — At) + At*a(t) + O(At®)
Thus the velocity at tis:

v(t) = (t) = Zim(r(t +At) —r(t — At)) + O(At?)

Velocities not explicitly solved.

A two-step method

Advantages: simplicity and good stability
Global error 0(At?)



Algorithms for time integration

Integrator: velocity-Verlet Algorithm

Taylor expansion for particle position and velocity at t + At:

r(t+At) = r(t) + v(t)At + %Atza(t) +O(AL®)

v(t+ At) = v(t) + a(t)At + %a(t)Atz + O (AL®)

Taylor expand acceleration

ADAL = (a(t +At) —a(t)
At
Thus the position and velocity are updated by:

r(t+At) =r(t) + v(t)At + % a(t)At” + O(At°)

jAt2 +0O(At%)

v(t+ At) = v(t) +%At(a(t +At) + a(t) + O(At%)

* Velocity calculated explicitly

» Possible to control the temperature /
« Stable in long time simulation {r@,‘V@}
 Most commonly used algorithm

‘ {£(t+AD), v(t+AD)}



Algorithms for time integration

Each integration cycle using velocity-Verlet Algorithm

r(t+AHD)=r;()+Arv,(1)+ H A f(1),
v(t+At)=v,(t)+ LAtf (1),
f.(t+AH)=Ff(r(t+ A1), v(t+At1)),

v.(I+AD=v,(1)+ A1) +£(1+A1)).

Beeman Algorithm

F(t+AL) = (1) + V(DAY +%(4a(t) _a(t— At)) At + O(AFY)

V(t+ At) = v(t) +é(2a(t + At) +5a(t) —a(t - At)) At + O(AL)



Part I: Molecular Dynamics

e How do you practically run a MD simulation

e Scaling, Periodic BC, Potential cut-offs, cell-list and Verlet list,
thermostats



How do you practically run a MD simulation?

1. Parameterization of MD system

= Scaling by model parameters
= Length scale: size of atom o
= Energy scale: depth of LJ potential well ¢
= Mass scale : mass of the atomm
= QOther units can be determined by g, and m
= Time unit: 7 = o(m/g)/?
= Velocity unit: v = (m/g)1/?
" Forceunit: F =¢/o
= Pressure unit: P = ¢/g3
= Temperature unit: T = ¢/kp

Physical quantity Unit Value for Ar
- lengtl 3.4 x 10710
An example: liquid argon at 120K: """ 7 e
We ch its of | h and energy £ 1.65 x 10 J
e choose units o mass, engt- an MASS m 6.69 x 10_25 kg

energy, then the reduced LJ units fime o(m/=)Y2 217 x 10712 s

becomeo =1m=1¢=1. velocity (s/m)1/2  1.57 x 102 m/s
force c/o 1.85 x 10712 N
pressure =/o3 4.20 x 107 N-m—2

temperature =/kp 120 K




How do you practically run a MD simulation?

1. Parameterization of MD system

Lennard-Jones potential energy function

o= [

= 20 2% [y 0y (e

Lifr}




How do you practically run a MD simulation?

2. Get the initial configuration

Simple systems: initial position of particles can be randomly initialized.
Complex systems: taken from data banks, for example Protein Data Bank (www.rcsb.org)

3. Assign initial velocities
At thermal equilibrium, the mean kinetic energy of the system at temperature T is:

1 3N ) 1
(K) = Ez myvf = > 3NkgT
i=1

This can be obtained by assigning the velocity components v; from a random
Gaussian distribution with zero mean and standard deviation (kzT /m;).



How do you practically run a MD simulation?

4. Apply periodic boundary conditions

©° ei®° 0% o For computational box 0 < x < L
je® ilie® ilie® Ifx < Othenx =x+1L
oo oo o Nl e ol Ifx > Lthenx =x — L
® ° E:‘"-%:\-IEII'L/ o A
o ® yePilye® l Minimum image criterion: among all images of a
©°® 0/® % oi° ® o particle, consider only the closest and neglect the
° ° . ° e . ° ® . rest.
»®  e0® e0® el
DU P

5. Truncate non-bonded interactions
Bonded interactions: local, therefore the computational cost is O(N).
Non-bonded interactions: involve all pairs of atoms, therefore the cost is O(N2).
Reducing the computing cost: use of cut-off for non-bonded interactions.
The cutoff distance may be no greater than %2 L (L= box length)

12 14 16 18 20 22 24 26
R

1. Abrupt truncation 2. Switching 3. Shifting
0.2 —I Lenr:ard-J()lnes | g
r ---- Abrupt truncation
7 00 .
> 0 :
-0.2F . i
-0.4-— ! I I I I . i
b




How do you practically run a MD simulation?

6. Choosing the time step

 Too small: covering small conformation space

@y
v

 Too large: numerical instability

e

e Suggested time steps 5 OZO”O
— Translation, 10 fs o0
— Flexible molecules and rigid bonds, 2fs ﬁ.».\.
— Flexible molecules and bonds, 1fs -® "o,



How do you practically run a MD simulation?

7. Saving CPU time
Verlet list

Cell list
Fe
T
._.. :J '.: .: :_..-. :
o® o - 2 . '—l—:T-—
._.°. . :-. .'. : m. ...-l
.. .q... ® . ® 1" .- K

Update verlet list only when
|Ar|max >1, T

Update cell list at every time steps
Cell; = [y /7]



How do you practically run a MD simulation?

7. Saving CPU time
An example:

Computational Cost : O(N?)

12000

—&—— No list

= 10000

8000

6000

4000

CPU time per 1000 steps (second

2000

T T T | L T T 7 T T T 7 T T | I T T 7 T T

T R
10000
Number of Atoms

| .
0 5000

" M .
15000

. iOOOO

200

100

CPU time per 1000 steps (second)

50

Long-range electrostatic interactions O(N?2):

e Ewald summation (Ewald, 1921): ~O(N?3/2)
« Fast multipole method (Greengard, 1987): ~O(N)
« Particle mesh Ewald (Darden, 1993): ~O(NlogN)

With Lists, computational cost: O(N)

- -8 - - Cell list
—&A—— Verlet list
~:=4:=-= Combination

-

|| L L I | LI ] 1 I [ L |
\

| I R | I T B

L 1

1
0 5000

10000 15000
Number of Atoms

20000



How do you practically run a MD simulation?

8. Numerical temperature control (thermostats)

(dBasic MD

e NVE (micro-canonical ensemble): an adiabatic process with no heat
exchange. Total energy of the system is conserved.

JOther common ensembles

e NVT (canonical ensemble): constant temperature MD. In NVT, the
energy of endothermic and exothermic processes is exchanged with a
thermostat.

e NPT (isothermal-isobaric ensemble): In addition to a thermostat, a
barostat is needed. It corresponds most closely to laboratory conditions
with a flask open to ambient temperature and pressure.

e WVT (grand-canonical ensemble): chemical potential, temperature
and volume are constants. The system exchange energy and particles with
a reservoir, so that various possible states of the system can differ in both
their total energy and total number of particles.



How do you practically run a MD simulation?

8. Numerical temperature control (thermostats)
1. Andersen thermostat

The simplest thermostat which does correctly sample the NVT ensemble

At each step, some prescribed number of particles is selected, and their velocities are drawn
from a Gaussian distribution at the prescribed temperature

B 3/2

P(v)=| —L—| exp|—-pmv*/2
( ) (Zﬂm) [ / ]

The strength of the coupling to the heat bath is specified by a collision frequency, v. For

each particle, a random variate is selected between 0 and 1. If this variate is less than vAt,
then that particle's velocities are reset.

2. Langevin thermostat

At each time step, all particles receive a friction force and a random force that satisfy the
fluctuation-dissipation theorem, thereby guaranteeing NVT statistics.
d’r;
mi—7 = =iV —yv; + W;(t)
where y is a friction coefficient, and W;(t) is a random force with
(Wi (@OW;(t')) = 6;;6(t — t")6yksT




How do you practically run a MD simulation?

8. Numerical temperature control (thermostats)

3. Nose-Hoover thermostat
A Hamiltonian with an extra degree of freedom for heat bath, s, is introduced

p; DS
Hyose = ZZ V@) + 55+ gksTin(s)

According to the Hamiltonian formalism, we define the equations of motion by using the

extended Hamiltonian )
dq; OHNose I

dt op;  mgs?
d-pt- . OHnNose o oo
dt dq;  Oq;

ds E)HI\_GSD o Ps

e dp,  Q
d'ps EjHNGSD Z m; qﬁ .g‘ELT

dt s g

It can be approved that the partition function of the extended system is equivalent to
that of the original system in the canonical ensemble except for a constant factor.

4. Dissipative particle dynamics thermostat (will be introduced in Part Il.)



How do you practically run a MD simulation?

Procedure of MD simulation

ri(t =0)

[Initial atomic model] _
v;i(t =0)

d

[Calculate forces acting on each atom] F=-0V(r)
dri

l -

[Move each atom according to those forces] ar v,

[Advance simulation time by a time step]




Part I: Molecular Dynamics

* Analysis of MD

e Configurations, time correlations, transport properties



Analysis of MD

& static properties such as structure, energy, and pressure
are obtained from pair (radial) distribution functions

3.5 L I L 1 1 i

— Experiment

25 TIP4P
- - TIP4P/2005

} . 1 i 1 i 1 g
2 i [ 8 10
nir) 1 FrA
Oxygen—oxygen radial distribution function for liquid water at
T =298 K (Vega, et. al, Faraday Discuss. 2009.)

gr) =

A 12 AT p

e g(r)dris the probability of finding a particle in volume d3r around r given
oneatr=0

e g(r)->0asr->0 due to the strong repulsive forces

e g(r)tendsto 1 asr at large distances, no long-range order

e g(r)=1 for Idea gas



Analysis of MD

& other outputs

1. Kinetic Energy N
0
= lim E —m;v; (1) dt
t—oo tf 2 ( )

According to the equipartition theorem, we have

(% mivl?) = ENkBT where d is the dimensionality

This defines the temperature of MD system.

2. Potential Energy

t—>oo

to+t
V = lim - j Z V(ri(t) —r(r)dr = —j V(r)g(r)d3r
t

0 i<j

3. Pressure

2

mps (% 1
j drf(g(r)  P=pkeT+o
0

Zri-Fi

[

2




Analysis of MD

® dynamic and transport properties are obtained from time
correlation functions

Velocity autocorrelation function
3kT
Kinetic energy w(0)=——- ~
m \

RS A
l//(fd)zﬁ<zvf(fo)'vf(fo+rd)> o 3
f’ Diffusivity D= [/(1,)

0

Stress autocorrelation function

J o JJ o,
P(t;)=——— D (S, (t) 5t +1;)
J= J,-_\- J_m- J_T_- d 3kT N < af N0/ af N0 d >
J. o J, J_ Shear modulus

v N Shear modulus 0
Jop = I??vavj +ézryﬁFr_m (p( )
i i=j

Viscosity 1] = Igf)(l‘d)
0




Analysis of MD

Ftra nsport properties
Example: 1D diffusion

ON O°N N —
= D N ,f = 0 XD| ——
Ot o’ b 2N 7Dt exp{ 4D1 }

Second moment of the distribution is the mean-square displacement
> 1
<[x(f) _ x(O)]‘> =— [¥*N(x.0)dx
Ny

Einstein’s relation

<[x(r)— x(O)]2> = 2Dt

Applicable when the time is large compared to the average time between atomic collisions

10t
10° | 1 Atshort time

x(t) = vt

[x(®)]* = [vt]*~t?

1wt

Displacement

107 F

{-1_2} i

Square

Mean
(=]

time lCI_3 10_3 10
Time (T)



Analysis of MD

“"tra nsport properties
Example: 1D diffusion

I
dx

xX(t)=— x(1)—x(0) = j.\“(r')dr'

at 0
Square both sides and average over time origins

msd = ([x(0) =x(O)] ) = j dr"j dr'(x(t")x(t"))
0 0

Use integrand symmetry, shift the time origin, then we obtain

([x)-xO)F) :
— | delx( (N 1== 012 f--mmmmmmmmmmooooos
21‘ .(l; T<X(r)\( )>( f] 0.1 -r
Take the long-time limit gn.ns g
0.06 {
x(7)—x(0) )« 0.04 ]
}1_{1} <|: 2 ] > = Jdr<x(r)x(0)> oozr j ggtsjedeSD i
| : 0 O3 zhﬁmezh F T
[T 1
Consider Einstein’s relation D = Jdr<x(r)x(0)> D = §f (v(t)v(0))dt
0 0

Green-Kubo relation (3D)



Examples of MD simulation of simple fluids

Pumping of water by rotating chiral carbon nanotube. Feng, et. al., Nanoscale, 2014.

e B0 Cue g7 7 Ups3e

Precursor Film in Dynamic Wetting, Yuan Effect of nano structures on the nucleus wetting
and Zhao. PRL. 2010. modes, Xu, et al., RSC Adv. 2016.



LAMMPS: hitp://lammps.sandia.gov/

GROMACS:s: http://www.gromacs.org/

NAMD, o EtD://WwWw.ks.uiuc.edu/Research/namd/

HOOMD-blue: http://codeblue.umich.edu/hoomd-blue/

AMBER
CHARMM
Materials Studio
RedMD
ESPResSo ... ...




Part ll: Dissipative Particle Dynamics

Brief introduction of DPD

e  motivation, history

Foundations of DPD

e Coarse-graining of MD (Mori-Zwanzig formalism)

Parameterization of a DPD system

e Force field of classic DPD

e Pressure, compressibility, viscosity, diffusivity of DPD fluids
e Scaling

e Modeling of complex fluids using DPD

How do you practically run a DPD simulation

e |Implementation of boundary conditions

e  Computing viscosity, diffusivity

Some Applications

* Droplet, Blood flows, Self-assembly Dynamics



Why CG/mesoscopic?

MACROscale scale: A Scale MICROscale
continuum description Between Them Atomistic description

Discontinuum Nature
Thermal Fluctuation
Beyond the capacity of MD

Navier-Stokes equation Molecular dynamics

~ 5.0 million per mm3

Continuum fluid mechanics Coarse-graining of molecules Atomistic description
Loses dynamical details of Contains details of
atom/molecules atom/molecules
Considers thermal fluctuation Limited in time/length

Mesh: FDM, FEM, FVM ... | Mesh: LBM, FH
Mesh-free: SPH Mesh-free: CGMD, DPD, SDPD Mesh-free: MD




Length and time scales for different models

TIME (s) Dissipative Pagtiele Dynamics (DPD)

Continuum
Equations

(s) 10° |

(ms) 103
(ps) 10°®

Atomistic
(ns) 10-° Models

(DR Ouantum

Mechanics

(fs) 10 ing hydrodynamics

| | [ | [ | )
10 10° 108 107  10% 105 10
(nm) (um) LENGTH (m)

D. G. Vlachos, Adv. Chem. Eng., 2005, 30: 1-61.



Brief Introduction of DPD

History of DPD method

**Babyhood (1992-1995)
» Original formulation (Hoogerbrugge & Koelman, 1992)

[Dissipative Particle Dynamics
DPD

Molecular Dynamics Lattice Gas Automata
MD LGA

Violation of Isotropy
and Galilean Invariance

Lattice Boltzmann Method
LBM

***Youth (1995-2003)
» Fluctuation-dissipation relation (Espanol & Warren, 1995)
» Important contributions to the DPD methodology ( model of polymers,
implementation of boundary conditions, et al.)

+** Golden Era (2003-now)

» Successful applications to material science, biological and biomedical
systems, fluid rheology and other complex fluids.



Brief Introduction of DPD

Successful DPD applications

Arphiphiic & 8 | mohcs b

Colloids Blood

Membrane Croplet Surfactant Platelets




Brief Introduction of DPD

Governing equation of DPD

 Particles in DPD represent clusters of molecules and
Interact through simple pair-wise forces

FC = a(l — rij/rc)zeij
Z(FC + FD + FR) F = )/(1 — Tij/T'C) (eijvij)eij

L1#] = 0'(1 —rij/rc)dt_l/zfijeij

« DPD system is thermally equilibrated through a
thermostat defined by forces FD and FR via o2 = 2ykgT.

e The time evolution equations are given by:
dr. = v.dt, dv, = Fdt

Hoogerbrugge & Koelman, EPL., 1992



Part Il: Dissipative Particle Dynamics

e Foundations of DPD

e Coarse-graining of MD (Mori-Zwanzig formalism)



Where does DPD come from?

DPD is a bottom-up particle-based mesoscopic method from
coarse-graining of MD system.

Microscopic system
All-atom model

MD

Irrelevant variables
are eliminated

Mesoscopic system

Coarse-grained model

DPD




Elimination of degrees of freedom from a system

Consider a linear differential system for two variables:

et 1
y

- J 2
T y+x (2)

Let x, = x(t = 0) and y, = y(t = 0) denote the corresponding initial values.
By solving the Eq. (2)

t
y = J e~ (=) x(s)ds + ype "
0

we can reduce the system into an equation for x(t) alone:

dx ‘
—=x+ J e~ (=) x(s)ds + ype "
dt ;

The second term in above equation introduces memory.

Dimension Reduction leads to memory effect and noise term.



Mori-Zwanzig Formalism (Zwanzig, Nonequilibrium Statistical Mechanics, 2001)

do:(z, t)

=Rz 1)), vz 0) =8 1<iEn

dt

Form the Liouville equation uw; = Lu, the components ¢ are

oi(z,t) = etla;

Let P be the conditional expectation projection Pg(x) = E[g|z].

Define Q = I —P and keep in mind that P* = P, Q* = Q, and PQ = 0,
as must be true for any projection.
0 | -
ety = Letty, = e La; = e"PLx; + e QLx;
Ot j j j J J

.t

Dyson’s formula etl = otQL | / et P esQL g
J 0

J f [ [ tQL
—e'ty; = e'PLy; + / TP Le Y QLy; ds + €™ QL
ot ‘ ‘ 0
This is the Mori-Zwanzig equation. This equation is exact and is an
alternative way of writing the original system.




Mori-Zwanzig Formalism (Zwanzig, Nonequilibrium Statistical Mechanics, 2001)

Consider an atomistic system consisting of N atoms which are grouped
Into K clusters, and N atoms in each cluster.

The Hamiltonian of the atomistic system Is: -
Atomistic Model

—zz PL

u=1 i=1 /JVI J#

Our Interest is on the molecular or CG level :

The equation of motion for CG particles
can be written as:

: 0
P, =k;T —Inw(R
=k —o—Ino(R)

kBlT XZK:lf;dS<[5FI (t- S)][éFX (0)" ]> PI\X/I(XS)

+0F, (t)

Details see Z. Li et al, Soft Matter, 10, 8659, 2014.



Bottom-up coarse-grained model:

The equation of motion (EOM) of the coarse-grained (CG) particles obtained from the
Mori-Zwanzig projection is in a form of generalized Langevin equation, which is given by

d
P, =
dt !

_l_

1 0
Ba—mlnw(R)

— [ r\ Px(s)
33 | as(oFie = oFxO)F)
5Ff(t) )

First approximation: Here, we assume that the non-bonded interactions between neigh-
boring clusters in the microscopic system are explicitly pairwise decomposable, and hence
the total force consists of pairwise forces, e.g. F; & ZJ#I F;; and 0F; = ZJ# oF;.

Second approximation: In practice, we neglect the many-body correlations between
different pairs, and assume that the force Fr; between two clusters I and J depends only
on the relative COM positions R; and Ry and is independent of the positions of the rest of

clusters.



Evaluation of coarse-grained interactions:

First term: Conservative Force:

Ba—RIlnw(R) = (F) ~ Z<F”> = Z Ff}(R;;)eu

J£I JAI

Second term: Dissipative Force:

- 8 [ (it - MsEx )

Based on the second approximation,
the correlation of fluctuating forces between different pairs is ignored.

Px(s)
M~

= > > {[6F1s(t = 9)|[6Fxy (0)]") Vx(s)

JAI Y#X

= > {0Fss(t = ) OF1s(O)]") Vi(8)|xry—s +
T ([0F15(t = $)][6F a1 (0)]") V() x—sy=r

= > ([Fus(t = )OF 1 OF) Vs (s

JAT

Thus, we have

([0F;(t — )][0Fx(0)]")




Markovian approximation:

Remark: The memory term given by Eq. (8) can be further simplified with a Markovian

assumption that the memory of fluctuating force in time is short enough to be approximated
by a Dirac delta function

B{6Frs(t — s)|[0F 15 (0)]") = 2v1s3(t — 5)
B o ds ([6F rs(t — $)|[6F15(0)]") Vis(s) =17 - Vs (t)

where ~r; is the friction tensor defined by ~;; = ﬁfum dt([ﬁF”(t)][éF”(U)]T>. Then,
the equation of motion of DPD particles based on the Markovian approximation can be
expressed by

dP
d—tI — Z { FE(RIJ)EIJ —r7(Rr5) (ers - Vig)ers +0F1;(2) }

JZ£I
DPD model

Where does DPD come from?
Answer:. DPD comes from coarse-graining of its underlying microscopic system.

X/

s lIrrelevant variables are eliminated using MZ projection.
s Only resolve the variables that we are interested in.

X/

s Unresolved details are represented by the dissipative and random forces.



Part Il: Dissipative Particle Dynamics

 Parameterization of a DPD system

e Force field of classic DPD

e Pressure, compressibility, viscosity, diffusivity of DPD fluids
e Scaling

e Modeling of complex fluids using DPD



Parameterization of a DPD system

Force field of classic DPD

Fl-Cj a(l — Tij/Tc)eij
F, = Z(Fﬁ- +Fj; +F) F) =y(1- Tij/""c)z(eij”ij)eij
%] F?j — ,/ZkaT(l — Tij/rc)dt_l/zfijeij

The conservative force FL-CJ- is responsible for the static properties, i.e.,
Pressure

Compressibility

Radial distribution function g(r)

The dissipative force F{; and random force F{; together act as a thermostat
and determine the dynamics properties, i.e.,

Viscosity

Diffusivity

Time correlation functions



Parameterization of a DPD system

DPD thermostat
D _
Fi=) (FS +FP + FR Fij = ywp (i) (eivij)ei
‘ U TH Ul FR = G () dtTY2¢ ey
%] ij — R\'ij 1jeij

To satisfy the fluctuation-dissipation theorem (FDT):

[wr (M)]? = wp(r) and o? = 2ykgT

Then, the dissipative force F{; and random force F}; together act as a DPD
thermostat.

0 1000 2000 3000
time step



RDF, pressure, compressibility, viscosity, diffusivity of DPD fluids

Radial distribution function

121 RDF
B n(r) 1 % 0.8¢
9(r) = 4T T2 Arp ,
0.2+
Pressure .
P = pkBT+W Zri Fl>
l
2mp® [
P = pkgT + 3 j rof(r)g(r)dr
0
Compressibility For linear conservative force
1 ap Fl% =a(1—rij/rc)eij
Kk 1l=—0 (—) The equation of state is
kgT \0p/, P = pkgT + 0.1ap?

Then
k™1 =1+0.2ap/kgT




RDF, pressure, compressibility, viscosity, diffusivity of DPD fluids

Diffusivity
Consider the motion of single particle given by Langevin equation
dv V;
— = ——+Ff
Mt T '

1 e;;ie;; 4w 0

= > o)L = T2 2wy (g

T 3 3 Jy

JFI
Self-diffusion coefficient

D—1 ) t)v(0))dt = tkgT
=3 wovd = ks

Viscosity  There are two contributions to the pressure tensor:
the kinetic part v and the dissipative part vp

D
Vg — 9
21 0
Vp = niddde ritwp(r)g(r)dr
15 J

If wp(r) = (1 —r/r.)?, and using g(r) = 1, we have
_ 45kgT N 2Ty pry
~ 4mypr? 1575

Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys., 1997.
Marsh, C.A., G. Backx, and M.H. Ernst, Static and dynamic properties of dissipative particle dynamics. PRE, 1997.

vV



Basic units: Length, mass and time units

The mass of the DPD particle is N,, times the mass of MD particle.
M = mNmg

The cut-of f radius can be found by equating mass densities of

MD and DPD systems.

1
R, = (NmPBPD)B g

PMD
The DPD conservative force coefficient a is found by equating the
dimensionless compressibility of the systems.

1IN —1
a = kpT*~: i
B+ 2apppp

The time scale is determined by insisting that the shear viscosities
of the DPD and MD fluids are the same.

Ve RN\2
e ()T
The variables marked with the symbol "*" have the same numerical
values as in DPD but they have units of MD.

Groot & Warren, J. Chem. Phys., 1997
Keaveny, Pivkin, Maxey & Karniadakis, J. Chem. Phys., 2005

TDPD —




Modeling of complex fluids using DPD
Bonded interactions

Hookean spring (harmonic potential)

dv
V =K,(r —r1)* F=——=2K,(ry — 1)

Finitely extensible nonlinear elastic (FENE) spring

50

—wcA
[ —— FENE
40 |—— WCA+FENE

30F

— _0.5KR?In |1 — (—)
V SKERjIn [ 7 ]

12 6 5 Ll
@] 1]
- " [

0.0 0.5 1.0 1.5
Distance r

Potential energy V

Wormlike chain (WLC) (for semi-flexible polymers)

An interpolation formula that approximates the force-extension behavior is (Marko-Siggia
formula)

F(T) = " L, is persistence length, indicating the rigidity/flexibility of

kgT |1 2 r 1 L represents the contour length of the polymer chain.
o a1
the polymer chain.

p

Symeonidis, V., G. Em Karniadakis, and B. Caswell, PRL, 2005.



Part Il: Dissipative Particle Dynamics

* How do you practically run a DPD simulation

* Implementation of boundary conditions
e  Computing viscosity, diffusivity



Modified velocity-Verlet algorithm for DPD

DPD forces depend on velocity

r;(t+Ar)=r(1)+Arv;(t)+ (A1) £(7)

Vi(1+ A1) =v;(1) HAA(1)

f.(r+A7)=f(r(r+ A7), v(r+Az))

vi(t+At)=vi(t)+ sAt(f(1)+£(1+ At))

Optimum value:

101
A =0.65
_, 10°
For this value the time step o
can be increased to 0.06 ol
without significant loss of 19
temperature control. 10

10®

107
At

Groot, R.D. and P.B. Warren, J. Chem. Phys., 1997.



Implementation of Boundary conditions: PBC
Periodic boundary conditions

°®° o0 o0 For computational box 0 < x < L

Ifx <Othenx =x+ L
Ifx > Lthenx =x—1L

Minimum image criterion: among all images of a
particle, consider only the closest and neglect the
rest.

Is replaced by one
here, shufted over
toward the edge of
the cell

S

Shift distance = yLt



Implementation of Boundary conditions: wall

Solid objects in DPD are made of frozen particles

Soft repulsion in DPD cannot prevent particles from penetrating walls

@ © ® ® ®
TEET SR \\\\k\

Specular Maxwellian Bounce-back
Reflection Reflection Reflection

Revenga, M., |. Zuniga, and P. Espanol, Boundary Model in DPD. International Journal of Modern Physics C, 1998.



Implementation of Boundary conditions: wall

Density Fluctuations in MD and DPD

1.8 T T T T T T 4 T T T T T T T T
—— MD + MD
.. DPD-N =1 : _
1.6} m "} 356 ——DPD, Nm—l |
I : - --DPD,N =3
1 : m
1.4 ﬂ. . e T DPD, N =5
! k
1.2 v
' 2.5 .
F
o ] :
L a 2{ i
a 0.8 = N T L
. t
1 | i i
il L
0.61, B L.
\
0.4 : - - - - —— s
0.2 . )
0 | | | | | | O: “H\» | | | | | | | |
0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14 16
Z z

As coarse-graining parameter N, increases, the density fluctuations in the DPD

simulations also increase, with the N, =5 case exhibiting very large values at the wall
and also inside the flow domain.

This is not a desired effect, because we expect the fluctuations to decrease as we
approach the continuum, i.e. N, — oo.

E.E. Keaveny, I.V. Pivkin, M. Maxey and G.E. Karniadakis, J. Chem. Phys., 123:104107, 2005



Implementation of Boundary conditions: wall

Adaptive Boundary Conditions

- r-Tr--Tr—--r—-=—

I:I: | | | | . Wall 3
T Locally | | | force
- 3veraed: .
|I|I enSIIlyI | I
- I | I ! Target
|:|: | | density
| |
- |
LT | :
|
|:|: ..... L..... I .......................... a
IIII -q_l I
IIII I I |
= 1
|
I|I| I I I [
L : : : : I Current
:u:u | | | | I density
=
C= I T A
I|I| I I I I I
LT | | | | |
C Ot 120 INBr
O h L

Iteratively adjust the wall repulsion force in each

bin based on the averaged density values.

-
PN R SN NN T T N T N AT T T N T T T N T T N T N T A N |

5 10 15 20 25 30

z
Adaptive BC:
* layers of particles
* bounce back reflection
» adaptive wall force

I.V. Pivkin and G.E. Karniadakis, PRL, vol. 101, 2008.



Implementation of Boundary conditions: wall

Effective boundary forces

~C ™ H‘-"'L"E—EE =
» o i Fc{h]=3ﬂ'ﬂ’“u—j J FS(r)g(r)=x-dx -dz = f“(h)n,
i r=h J =0 ¥
R P
Fp(h) = —:rp}ruerj j m;ﬁr}g(rlri—j dx -dz
=h Jx

'MIIH_ —.: 7
Fpi(h) = -2rnpywe. J J uu{r}gfr}r? — -dx -dz
=h =0 hr?

Fr(h) = (ogi(h)e, + og (h)e;) &

Time-evolution of the velocity profile in Poiseuille flow

T T T T T 6 T T T | L T
o DPD simulation || —— P
Analytic solution sk —— T




Computing viscosity, diffusivity

Periodic Poiseuille flow

d?u

—V——5 = gx

dz?

BC:u(z=0)=0
u(z==+d)=0

Solution:

u(z) = 2% 2(d - |21)

v
‘ 1

Sop = 17721"1(,1;}5 +E
I

N
Z ryﬁFfm

=]

Viscosity
Plane Poiseuille flow
: -b‘-" .
du 1dp . d*u
—_— e VvV —
dt ~ pdx  bx T Vg2
Steady case and driven by g, :
d*u
Vg 8
Couette flow (constant shear rate)
y v
—+ ;. yx T H
Diffusivity

.1 2
D =r£n30 §(|r(r) — r(0)| )

—_— 1 ”
D = §j0 (v(t)v(0))dt




Part Il: Dissipative Particle Dynamics

e Some Applications
* Droplet, Blood flows, Self-assembly Dynamics



Some Applications: Droplet

C’\Jj IleII’ ‘I""I""I""I""I'-"'I""7
Y ol50p static contact angle -
\}\\\” 2 |
AR =100F :
NN g |
\ 5
V4 \\\ S
N 2
N =
7!

Chaudhury, et al. Science, 1992. Bain, et al. Nature, 1994.

0
g0 B0 A X

From the website of LSST of ETH Zirich

Li Z. et al., Phys. Fluids, 2013.
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Some Applications

Provided by Xuejin Li and Lu Lu of CRUNCH Group

http://www.dam.brown.edu/people/ytang/index.php



Some Applications: Self-assembly Dynamics

128M DPD particles

t = 15000 t =124000

100
GPU simulations performed by Yu-Hang Tang of CRUNCH Group



Software/Package for DPD simulation

http://lammps.sandia.gov/

ESPResSo: Extensible Simulation Package for Research
on Soft matter http://espressomd.org/ a

ESPResSo

HOOMD-blue: a general-purpose particle simulation toolkit

http://codeblue.umich.edu/hoomd-blue/ HOOMD-blue

DPDmacs: Fast coarse-grained simulations
http://www.apmaths.uwo.ca/~mkarttu/dpdmacs.shtml
Features: compatible with Gromacs.

MyDPD: C++ mesodynamics code
http://multiscalelab.org/mydpd
Features: simple, serial but functional.




